
MapReduce Performance Models for Hadoop 2.x

IT4BI MSc Thesis

Student: Daria Glushkova
Advisors: Petar Jovanovic, Alberto Abello

Master on Information Technologies for Business Intelligence
Universitat Politècnica de Catalunya

Barcelona
08/09/2016

A thesis presented by Daria Glushkova
in partial fulfillment of the requirements for the MSc degree on

Information Technologies for Business Intelligence

Abstract
MapReduce is a popular programming model for distributed processing of large data sets. Apache
Hadoop is one of the most common open-source implementations of MapReduce paradigm. Per-
formance analysis of concurrent job executions has been recognized as a challenging problem.
Analytical performance models may provide reasonably accurate job response time at signifi-
cantly lower cost than experimental evaluation of real setups.

In this thesis, we tackle the challenge of theoretically defining and implementing MapReduce
performance models for Hadoop 2.x. We review the existing MapReduce performance models
for the first version of Hadoop and conclude, that due to architectural changes and dynamic
resource allocation, existing models could not be applied for Hadoop 2.x. The proposed solution
is based on performance model for Hadoop 1.x that combines a precedence graph model, that
allows to capture the execution flow of the job, and a queueing network model to capture the
intra-job synchronization constraints due the contention at shared resources. We adopted this
model to Hadoop 2.x by modifying the key step in the model construction. The accuracy of
our solution is validated via comparison of our model against measurements of a real Hadoop
2.x setup. According to our evaluation results, the proposed model produces enough accurate
estimates of average job response time, and allows further fine tuning of the model.

ii

Contents

1 Introduction 1

2 Background 2
2.1 Hadoop Architecture . 2
2.2 Main components of YARN module . 4
2.3 Resource management in Hadoop 2.x . 6
2.4 Job scheduling in Hadoop 2.x . 7

3 Related work 8
3.1 Static MapReduce Performance Models . 8
3.2 Dynamic MapReduce Performance Models . 11

4 Proposed Solution 13
4.1 Input Cost Parameters . 13
4.2 The Modified Mean Value Analysis (MVA) Algorithm 13

4.2.1 Initialization of task response time . 15
4.2.2 Building precedence tree . 15
4.2.3 Estimation of the Intra- and Inter- job overlaps factors 18
4.2.4 Average Job Response Time Estimation 19
4.2.5 Estimation of task response time . 19
4.2.6 Applying convergence test . 19

4.3 Complexity Analysis . 20
4.4 Implementation details . 21

5 Evaluation 22

6 Conclusions and Future Work 26

7 Appendix 27
7.1 Appendix A . 27
7.2 Appendix B . 28

7.2.1 Example of building a precedence tree 28
7.2.2 Finding the optimal value for ε . 30

7.3 Appendix C . 31
7.3.1 Modified MVA using iterative approximation 31
7.3.2 Response Time Estimation . 32
7.3.3 Estimation of Overlap Factors . 33

7.4 Appendix D . 34
7.4.1 UML class diagrams . 34
7.4.2 Comparison of results of modified AMVA, BardSchweitzerAMVA and

exact MVA solution . 35
7.4.3 Evaluation results . 37

References45

iii

1. Introduction
Distributed data processing systems have emerged as a necessity for processing large-scale data
volumes in reasonable time. MapReduce is a programming paradigm for distributed processing
of large data sets. The main idea of the MapReduce model is to hide the details of the parallel
execution from users, so that they can focus only on data processing strategies. MapReduce
operates in two main stages: Map stage and Reduce stage. Map stage consists of a set of Map
tasks, each task is processing a block of input data. Reduce stage consists of 2 parts: Shuffle,
that transfers the outputs of Map tasks to the Reduce tasks, and a set of Reduce tasks that further
process groups of transferred data and output the final result to HDFS. Each Map and Reduce task
consists of several phases, which may access and require different groups of resources. Thus, a
MapReduce job is composed of a number of Map and Reduce tasks, which run in parallel but
exhibit precedence constraints between map and shuffle tasks and synchronization delays due to
sharing resources.

Programming in MapReduce is just a matter of adapting an algorithm to this peculiar two-
phase processing model. Programs written in this functional style are automatically parallelized
and executed on the computing clusters. Apache Hadoop is one of the most popular open-source
implementation of MapReduce paradigm. All the modules in Hadoop are designed with a funda-
mental assumption that hardware failures are common and thus should be automatically handled
by the framework. It provides strong support to fault tolerance, reliability, and scalability for
distributed data processing scenarios. In the first version of Hadoop, the programming paradigm
of the MapReduce and the resource management were tightly coupled. In order to improve the
overall performance of Hadoop, some requirements were added, such as high cluster utilization,
high level of reliability/availability, support for programming model diversity, backward com-
patibility, and flexible resource model [2]. The architecture of the second version of Hadoop has
undergone significant changes: it decouples the programming model from the resource manage-
ment infrastructure and delegates many scheduling functions to per-application components.

MapReduce-based systems are increasingly being used for large-scale data analysis applica-
tions. To minimize the execution time is vital for MapReduce application as well as for all data
processing applications,especially in per-per-use cloud environments. One of the main require-
ments for optimizing the execution time is to estimate the execution as accurately as possible. For
accurate estimation of the execution time, we need to build performance models that follow the
programming model of data processing applications. Furthermore, a clear understanding of sys-
tem performance under different circumstances is a key to critical decision making in workload
management and resource capacity planning. Analytical performance models are particularly at-
tractive tools as they might provide reasonably accurate job response time at significantly lower
cost than simulation and experimental evaluation of real setups.

There exist efforts for developing performance models for MapReduce taking into account
Hadoop 1.x settings [3][10][19]. The existing cost models for Hadoop 1.x have been imple-
mented in Starfish - an open source self-tuning system for big data analysis [6].

The architectural changes in version 2.x introduces the dynamic resource allocation to Hadoop.
The cluster resources are now being considered as continuous, hence there is no static partition-
ing of resources per map and reduce tasks (i.e., map and reduce slots). Clearly, it is impossible
to apply the cost models relaying on such a static resource allocation as in the first version of
Hadoop, and hence it is necessary to find other approaches. This thesis is dedicated to defining
and evaluating the cost models for Hadoop 2.x. As a base of our model we took the analytical

1

performance model proposed for the first version of Hadoop in [19]. This model combines a
precedence graph model, which allows to capture dependencies between different tasks within a
one job, and queueing network model to capture the intra-job synchronization constraints. Due
to changes in the Hadoop architecture, we adapted that model for Hadoop 2.x. and proposed
a method for a timeline construction, based on which the precedence tree is built. The defined
performance model for Hadoop 2.x must be finally evaluated for their accuracy, and if necessary
further tuned for providing better estimations. We validated the accuracy via comparison of our
model against measurements of a Hadoop 2.x setup.

In particular, our main contributions are as follows:
• Considering the architecture of Hadoop 2.x, we identify the main differences from the first

version of Hadoop, focusing on those that can potentially affect the cost of the MapReduce
job execution.

• Theoretically defining the MapReduce cost models for Hadoop 2.x. As a base for our per-
formance cost model we took the mathematical model from [19] and adopt it for Hadoop
2.x.

• Implementation, tuning and accuracy evaluation of the MapReduce performance models
for Hadoop 2.x.

Outline
The paper is organized as follows. In Section 2, we focus on the architecture of Hadoop 1.x

and Hadoop 2.x, outlining the most significant differences and focusing on the resource manage-
ment and job scheduling in Hadoop 2.x. In Section 3, we provide a review of the related work,
describing existing approaches for constructing performance cost models for Hadoop 1.x. Theo-
retical definition of the analytical MapReduce performance models for Hadoop 2.x is presented
in Section 4. Section 5 is dedicated to evaluation of the created MapReduce performance model
for Hadoop 2.x. We summarize our achievements and present ideas for future work in Section
6. Finally, the Appendix contains the description of the main algorithms and intermediate results
that were mentioned in previous sections.

2. Background
In this section we will identify the most significant differences in the architecture of Hadoop

1.x and Hadoop 2.x, considering in details the job execution and resource requirement processes.

2.1 Hadoop Architecture
The initial design of Apache Hadoop was mostly focused on processing and generating an im-
mense amount of data through running MapReduce jobs. In the first version of Apache Hadoop
architecture there were two significant drawbacks. The first shortcoming was a tight coupling
of a specific programming model with the resource management infrastructure. All applications
had to fit the MapReduce programming model. The second important drawback was centralized

2

handling of job’s control flow that caused the problem of scalability for the scheduler. In order
to improve the overall performance of Hadoop, some requirements were added, such as high
cluster utilization, high level of reliability/availability, support for programming model diversity,
backward compatibility, and flexible resource model [2]. These new requirements and the main
limitations of the first version of Hadoop have caused significant changes in the architecture of
Hadoop 2.x. The architecture of Hadoop 2.x decouples the programming model from the re-
source management infrastructure and delegates many scheduling functions to per-application
components.

Figure 2.1 represents the transition from Hadoop 1.x to Hadoop 2.x.

Figure 2.1: Comparison of architecture of Hadoop 1.x and Hadoop 2.x

The main components of Hadoop 1.x were:

• Hadoop Distributed File System (HDFS): A distributed file system that provides high-
throughput access to application data [5].

• Hadoop MapReduce: Distributed programming model and associated implementation for
processing and generating large datasets [1]. In the Hadoop’s architecture there were two
main components: Single master JobTracker (JT) and one slave TaskTracker (TT) per
cluster node. Users submitted MapReduce jobs to the JobTracker, which coordinated its
execution across the TaskTrackers. JobTracker was responsible for scheduling, monitoring
and re-execution of failed tasks, reporting job status to users, recording audit logs, aggre-
gation of statistics, user authentication, and many others functions. The great amount of
responsibilities caused limitation of scalability. TaskTracker was configured with a fixed
number of map slots and reduce slots. It means, that there was the fixed maximal num-
ber of map and reduce tasks that can run in parallel in one cluster node. TTs periodically
heartbeated to the JT to report the status of running tasks on that node and to affirm its
liveness.

The base Apache Hadoop 2.x framework is composed of the following modules:

• Hadoop Distributed File System (HDFS)

• Hadoop YARN (Yet Another Resource Negotiator): A module for job scheduling and
cluster resource management [2]

• Hadoop MapReduce

The YARN module appeared and changed the architecture significantly. It is responsible
for managing cluster resources and job scheduling. In the previous versions of Hadoop, this

3

functionality was integrated with the MapReduce module where it was realized by the Job-
Tracker component. The fundamental idea of YARN is to split the two major functionalities
of the JobTracker, resource management and job scheduling/monitoring in order to have a global
ResourceManager, and application-specific ApplicationMaster. By separating resource manage-
ment functions from the programming model, YARN delegates many scheduling-related tasks to
per-job components. In the new version of Hadoop, MapReduce is only one of the applications
layered on top of YARN. YARN completely departs from the static partitioning of resources for
maps and reduces, considering the cluster resources as a continuum, which brought significant
improvements to cluster utilization. Thanks to decoupling of resource management and pro-
gramming framework, YARN provides greater scalability, higher efficiency, and enables a large
number of different frameworks to efficiently share a cluster. Programming frameworks running
on YARN coordinate intra-application communication, execution flow, and dynamic optimiza-
tions, unlocking noticeable performance improvements.

2.2 Main components of YARN module
The YARN module consists of three main components:

• Global ResourceManager (RM) per cluster

• NodeManager (NM) per each node

• Application Master (AM) per each application

The ResourceManager provides scheduling of applications. Each application is managed by
an ApplicationMaster that requests per-task computation resources in the form of containers.
Containers are scheduled by the ResourceManager and locally managed by the per node Node-
Manager. A detailed description of the responsibilities and components of the ResourceManager,
NodeManager, and ApplicationMaster are presented bellow.

The ResourceManager (RM) runs as a daemon on a dedicated machine one per cluster and
arbitrates all the available cluster resources among various competing applications in the cluster.
We will not go in detail of all components of RM [23] and will focus on the most important ones.

RM consists of two main components:

• Scheduler, which is responsible for allocating resources to the various applications that are
running.

• Application Manager Service that negotiates the first container (logical bundle of resources
bound to a particular node) for the Application Master. It is also responsible for termina-
tion and unregister-requests from any finishing AMs, obtaining container-allocation and
deallocation requests from all running AMs and forward them over to the YarnScheduler.
It also restarts AM on nodes in case of failure.

RM works together with the following components:

• The per node NodeManagers, which take instructions from the ResourceManager, man-
age resources available on a single node, and accept container requests from Application-
Masters. NodeManagers are also reporting the resource status of their nodes back to the
ResourceManager.

4

• The per application ApplicationMasters, which are responsible for negotiating resources
with the ResourceManager and for working with the NodeManagers to start, monitor, and
stop the containers.

The NodeManager (NM) is a special worker system daemon running on each node. It is
responsible for managing resources available on a single node and accepting container requests
from Application Masters. NM’s main responsibilities can be found in [24].

The ApplicationMaster (AM) itself runs in the cluster just like any other container. The AM
is managing all lifecycle aspects of application, including dynamically increasing and decreasing
resources consumption, managing the flow of execution, and handling faults. The main respon-
sibilities of Application Master can be defined as follows:

• Initializing the process of reporting liveliness to the ResourceManager

• Computing the resource requirements of the application

• Translating the requirements into ResourceRequests that are understood by the YARN
scheduler

• Negotiating those resource requests with the scheduler

• Based on the containers it receives from the RM, the AM may update its execution plan to
accommodate perceived abundance or scarcity

• Launch of containers by communicating to NodeManagers

• Tracking the status of running containers and monitoring their progress

• Reacting to container or node failures by requesting alternative resources from the sched-
uler, if needed

Based on the core functionalities of YARN components, the general schema of job execution
process in YARN can be determined as described in a Figure 2.2.

Figure 2.2: Job execution process in YARN

5

The main responsibilities of YARN:

1. The process starts when an application submits a request to the ResourceManager.

2. Next, the ApplicationMaster registers with the ResourceManager through AM Service and
is started in the container that AM Service dedicated for it.

3. The ApplicationMaster then requests containers from the ResourceManager to perform
actual work.

4. Once the ApplicationMaster obtains containers, it can proceed to launch of containers by
communicating to a NodeManager.

5. Computation takes place in the containers, which keep in contact with the Application-
Master. Monitoring the progress is done inside the AM’s container and it is strictly the
AM’s responsibility.

6. When the application is complete, ApplicationMaster should unregister from the Resource-
Manager.

2.3 Resource management in Hadoop 2.x
Let us consider in detail the resource requirement process.

Application Master needs to figure out its own resource requirements. Resource requirements
can be:

• Static
Resource requirements are decided at the time of application submission and when the Ap-
plicationMaster starts running, there is no change in that specification. In case of Hadoop
MapReduce, the number of map tasks is based on the input splits for MapReduce appli-
cations and the number of reducers on user input. Thus the total number of mappers and
reducers is static and defined before the application submission.

• Dynamic
When dynamic resource requirements are applied, the ApplicationMaster may choose how
many resources to request at run time based on criteria such as user hints, availability of
cluster resources, and business logic.

Once a set of resource requirements is clearly defined, the ApplicationMaster can begin send-
ing the requests in a heartbeat message, via the allocate API, to the ResourceManager. Based
on the task requirements, AM calculates how many containers it needs and request those many
containers. One thing to note is that containers will not be immediately allocated to the AM.
This does not imply that the ApplicationMaster should keep on asking the pending count of re-
quired containers. Once an allocate request has been sent, the ApplicationMaster will eventually
be allocated the containers based on cluster capacity, priorities and the scheduling policy. The
ApplicationMaster should only request for containers again if and only if its original estimate
changed and it needs additional containers.

The ApplicationMaster asks for specific resources via a list of ResourceRequests objects, and
a list of containers ToBeReleased. The containers ToBeReleased are any containers that were

6

allocated by the scheduler in earlier cycles, but are no longer needed. The ResourceRequest
object consists of the following elements:

• Priority of the request. When asking for sets of containers, an AM may define different
priorities to each set. For example, the Map-Reduce AM may assign a higher priority
to containers needed for the Map tasks and a lower priority to containers needed for the
Reduce tasks. Higher-priority requests of an application are served first by the ResourceM-
anager before the lower priority requests of the same application are handled. Potentially,
resources of different capabilities can be requested at the same priority, in which case the
ResourceManager may order them arbitrarily. There is no cross-application implication of
priorities.

• The name of the resource location on which the allocation is desired. It currently accepts
a machine or a rack name.

• Resource capability, which is the amount or size of each container required for that request.

• Number of containers, with respect to the specifications of priority and resource location
that are required by the application.

• A Boolean relaxLocality flag (defaults to true), which tells the ResourceManager if the
application wants locality to be loose or strict.

The response contains a list of newly allocated containers, the statuses of application-specific
containers that completed since the previous interaction between the ApplicationMaster and the
ResourceManager, and an indicator to the application about available headroom for cluster re-
sources. The ApplicationMaster can use the container statuses to collect information about com-
pleted containers and, for example, react to failure. The headroom can be used by the Applica-
tionMaster to tune its future requests for resources. For example, the MapReduce Application-
Master can use this information to schedule map and reduce tasks appropriately so as to avoid
deadlocks (e.g., to prevent using up all its headroom for reduce tasks).

2.4 Job scheduling in Hadoop 2.x
There is another differentiating characteristic in terms of how the scheduling of those resources
happens:

• All of the allocated containers may be required to run together a kind of scheduling where
resource usage follows a static all-or-nothing model.

• Alternatively, resource usage may change elastically, such that containers can proceed with
their work independently of the availability of resources for the remaining containers.

ApplicationMaster can do a second level of scheduling and assign its containers to whichever
task that is part of its execution plan. Thus resource allocation in YARN is late binding. The Ap-
plicationMaster is obligated only to use resources as provided by the container, it does not have
to apply them to the logical task for which it originally requested the resources. The MapReduce
ApplicationMaster takes advantage of the dynamic two-level scheduling. When the MapReduce
ApplicationMaster receives a container, it matches that container against the set of pending map

7

tasks, selecting a task with input data closest to the container, first trying data local tasks, and
then falling back to rack locality.

According to all the above-described we can conclude, that the fundamental idea of YARN
is to split the two major responsibilities of the Job Tracker that is, resource management and job
scheduling/monitoring into separate daemons: a global ResourceManager and a per-application
ApplicationMaster (AM). Specifically, a per-cluster ResourceManager tracks usage of resources,
monitors the health of various nodes in the cluster, enforces resource-allocation invariants, and
arbitrates conflicts among users. By separating these multiple duties that were previously shoul-
dered by a single daemon, the JobTracker, in Hadoop 1.x, the ResourceManager can simply
allocate resources centrally based on a specification of an application’s requirements, but ignore
how the application makes use of those resources. That responsibility is delegated to an Ap-
plicationMaster, which coordinates the logical execution of a single application by requesting
resources from the ResourceManager, generating a physical plan of its work, making use of the
resources it receives, and coordinating the execution of such a physical plan.

3. Related work
We start this section by briefly reviewing in Subsection 3.1 the previous efforts to analyze

the performance of MapReduce applications for the first version of Hadoop. All performance
models described in Subsection 3.1 are static, they do not take into account the queuing delays
due to contention at shared resources and the synchronization delays between different tasks. In
Subsection 3.2 we introduced two most common approaches for modeling parallel applications
and described the analytical performance model proposed for Hadoop 1.x that takes into consid-
eration the queuing delays.

3.1 Static MapReduce Performance Models
In the MapReduce programming model there are two main stages: Map stage and Reduce stage.
Map stage consists of a set of Map tasks, each task is processing a block of input data. Reduce
stage consists of 2 parts: Shuffle, that transfers the outputs of Map tasks to the Reduce tasks, and
a set of Reduce tasks that further process groups of transferred data and output the final result
to HDFS. Each Map and Reduce task consists of several phases, which may access and require
different groups of resources.

There are significant efforts and important results towards modeling the task phases in order
to model accurately the execution of a MapReduce job in Hadoop 1.x.

Herodotou proposed performance cost models for describing the execution of MapReduce
job on Hadoop 1.x in [3]. In his paper, performance models describe dataflow and cost infor-
mation at the final granularity of phases within the map and reduce tasks. Models capture the
following phases of Map task: read, map, collect, spill and merge. For the reduce task there are
performance models for shuffle phase, merge phase and reduce and write phases. In terms of

8

Herodotou model the overall job execution time is simply the sum of the costs from all map and
reduce phases and can be estimated using the following formulas:

totalJobT ime =

{
totalMapsT ime, if pNumReducers = 0;
totalMapsT ime+ totalReducesT ime, if pNumReducers > 0;

(3.1)
where totalMapsTime and totalReduceTime can be obtained as following:

totalMapsT ime =
pNumMappers× totalMapT ime

pNumNodes× pMaxMapsPerNode
, (3.2)

totalReducesT ime =
pNumReducers× totalReduceT ime
pNumNodes× pMaxRedPerNode

, (3.3)

where pNumMappers - number of Map tasks; totalMapT ime - the cost on one Map task;
pNumNodes - the total number of nodes; pMaxMapsPerNode - number of slots per Map
tasks for one node; pNumReducers - number of Reduce tasks; totalReduceT ime - the cost on
one Reduce task; pMaxRedPerNode - number of slots per Reduce tasks for one node.

As we can see in these cost formulas there is a fix amount of slots per Map and Reduce tasks
- pMaxMapsPerNode and pMaxRedPerNode respectively. In the first version of Hadoop
the number of resources for Map and Reduce jobs is determined in advance and does not change.
YARN completely departs from the static partitioning of resources for maps and reduces, there is
no slot configuration in YARN allowing it to be more flexible. Thus we cannot apply Herodotou’s
cost formulas directly and it is necessary to find another approaches.

There has also been an effort of defining the low and upper bounds for job completion time
and resource allocation to the job so that it finishes before required deadline. In [10], the au-
thors proposed the framework called ARIA (Automatic Resource Inference and Allocation for
MapReduce Envinronments) that for a given job completion deadline could allocate the appro-
priate amount of resources required for meeting the deadline. This framework consists of three
inter-related components. The first component is a Job Profile that contains the performance
characteristics of application during map and reduce stages. The second component constructs a
MapReduce performance model, that for a given job and its soft deadline estimates the amount of
resources required for job completion within a deadline. Provided performance model captures
the following stages of MapReduce job: map, shuffle/sort and reduce stages. The last component
is the scheduler itself that determines the job ordering and the amount of resources required for
job completion within the deadline.

For estimating the job completion time authors applied a Makespan Theorem for greedy task
assignment, which allows to identify the upper and lower bounds for the task completion time.
Then, by Makespan Theorem, the job completion time lies between the following lower and
upper bounds:

TLow
J = TLow

M + Sh1avg + TLow
Sh + TLow

R (3.4)

TUp
J = TUp

M + Sh1Max + TUp
Sh + TUp

R (3.5)

9

TAvg
J =

TUp
J + TLow

J

2
, (3.6)

where TLow
M and TUp

M - the lower and upper bounds for the duration of the entire map stage
respectively; TLow

R and TUp
R - the lower and upper bounds of completion time for reduce phase;

Sh1avg , Sh1max - the average and maximum of task duration during the shuffle phases of the first
reduce wave; TLow

Sh , TUp
Sh - the lower and upper bounds on the duration of typical shuffle phase.

According to the research TAvg
J is the closest estimation of job completion time T. It was

observed that the relative error between the predicted average time TAvg
J and the measured job

completion time is less than 10%, and hence, the predictions based on TAvg
J are well suited for

ensuring the job completion within the deadline. Authors also tackled the problem of finding the
optimal number of map and reduce slots that need to be allocated to the job in order to guarantee
job termination within time TAvg

J . Thus, provided model can be used for defining the possible
upper and low bounds for the job completion time as a function of the input dataset size and
allocated resources. Nevertheless, this model has significant limitations that do not allow us to
apply it to the second version of Hadoop. As in Herodotou performance cost models the proposed
model uses the fixed amount of slots per map and reduce tasks within one node. Moreover, to be
able to improve the overall performance it is necessary to change the Hadoop infrastructure and
replace the standard scheduler by proposed deadline scheduling.

There has also been an attempt of evaluating the impact of task scheduling on system perfor-
mance. Current schedulers neither pack tasks nor consider all their relevant resource demands.
This results in fragmentation and over-allocation of resources and, as a consequence, it decreases
noticeably the overall performance. Robert Grandl et al. present in [9] Tetris, a multi-resource
cluster scheduler, that packs tasks to nodes based on their requirements of all resource types.
This approach allows to avoid the main limitations of existing schedulers. The objective in pack-
ing is to maximize the task throughput and speed up job completion. Multi-resource packing of
tasks is analogous to multidimensional bin packing. Given balls and bins with sizes inRd, where
d is the number of resources to be allocated, multidimensional bin packing assigns the balls to
the fewest number of bins. Achieving good packing efficiency improves makespan but does not
necessarily speed up individual jobs. Preferentially offering resources to the job with the smallest
remaining time. Thus, Tetris combines both heuristics - best packing and shortest remaining job
time - to reduce average job completion time. Authors proved that achieving desired amounts
of fairness can coexist with improving cluster performance. This scheduler was implemented in
YARN and showed gain of over 30% in makespan and job completion time. The more detailed
model description can be found in Appendix A.

It should be noticed that this model has a number of shortcomings:

• Fast solvers are only known for a few special cases with non-linear constraints, meanwhile
several of the constraints are non-linear: resource malleability (1), task placement (2) and
how task duration relates to the resources allocated at multiple machines (3). Finding the
optimal allocation is computationally very expensive. Scheduling theory shows that even
with elimination the placement considerations, the problem of packing multi-dimensional
balls to minimal number of bins is APX-Hard [18].

10

• Ignoring dependencies between tasks. It is unacceptable in case of MapReduce jobs, where
the shuffle/sort phase starts as the first map task is completed.

• New job arrival requires resolving the problem.

3.2 Dynamic MapReduce Performance Models
The main challenge in developing the analytical cost models for MapReduce jobs is that they
must capture, with reasonable accuracy, the various sources of delays that job experiences. In
particular, tasks belonging to a job may experience two types of delays: queuing delays due to
contention at shared resources, and synchronization delays due to precedence constraints among
tasks that cooperate in the same job - map and reduce phases. There are two main techniques to
estimate the performance of workloads of parallel applications that do not take into account the
synchronization delays. One such technique is Mean Value Analysis (MVA)[14,15]. MVA tech-
nique takes into consideration only task queueing delays due to sharing of common resources.
Thus, MVA cannot be directly applied to workloads that have precedence constraints, such as
the synchronization among map and reduce tasks belonging to the same MapReduce job. Alter-
native classical solution is to jointly exploit Markov Chains for representing the possible states
of the system, and queuing network models, to compute the transition rates between states, are
also available [16,17]. However, such approaches do not scale well since the state space grows
exponentially with the number of tasks, making it impossible to be applied to model jobs with
many tasks, as is commonly the case of MapReduce jobs.

Vianna et al. in their work [19] proposed analytical performance model for MapReduce
workloads. Proposed model is based on reference model [12]. Given a tree specifying the prece-
dence constraints among tasks of a parallel job as input, the reference model applies an iterative
approximate Mean Value Analysis (MVA) algorithm to predict performance metrics (e.g., aver-
age job response time, resource utilization and throughput). The reference model allows different
types of precedence constraints among tasks of a job, specified by simple task operators, such
as parallel or sequential execution. However, the reference model cannot be directly applied to
MapReduce workload due to the fact that in MapReduce job the beginning of shuffle phase of
reduce task depends on the end of first map task.

Proposed in [19] model enhances the reference model. Contributions over classical reference
model are the following:

• explicitly address the synchronization delays due to precedence constraints among tasks
that cooperate in the same job, and show how to use the primitive task operators introduced
in the reference model to build a precedence tree for it;

• taking into account queuing delays due to contention at shared resources;

• propose an alternative strategy to estimate the average response time of subsets of the tasks
belonging to a MapReduce job, which leads to more accurate estimates of a job’s average
response time.

Authors model the distributed architecture with a closed queuing network with service centers
representing each CPU, each disk, the fiber channel that connects the CPUs and disks and the

11

network. Memory constraints were not modeled. The workload is composed by a number N of
jobs executing concurrently in the system. Each job has m map tasks and r reduce tasks. The
numbers of map and reduce tasks that each worker node can execute in parallel are limited and
given by the parameters pm and pr - the number of threads to process the map and reduce tasks
respectively. The reduce task is composed by m shuffle-sort sub-tasks and one merge sub-task.
Map tasks are not divided into subtasks.

The input parameters for the model can be divided into two categories:

• architecture parameters: the number of nodes n, the number of CPU’s c and the number of
exclusive disks d per node;

• workload parameters: the number of tasks of each type (m and r), number of threads (per
node) to process tasks of each type (pm, pr), number of threads (within each reduce task)
to process shuffle tasks (ps), and the service demand matrix (Dik), with the demand of
each task i in each center k.

The task precedencies of MapReduce jobs cannot be defined beforehand, as a result, the
precedence tree cannot be an input parameter as in the reference model. Authors solve this
issue by proposing an algorithm to dynamically build the precedence tree for a job, and add it
as an extra step to the algorithm proposed by Liang and Tripathi in [12]. The precedence tree
is rebuilding at each iteration of the algorithm, using the average response times of individual
tasks computed in the previous iteration. This approach allows to build a new more accurate
precedence tree in the current iteration.

The main aim of the dynamic construction of precedence tree is to capture the execution flow
of the job by taking into account the parallel/serial execution of individual tasks as well as their
inter-dependencies. It gives a possibility to estimate the average response time of individual tasks
and, by composition, of the whole job. In their work authors also proposed solutions of how to
estimate when each task starts and finishes and the average response time of the internal nodes
of the tree.

Once the precedence tree is built, the next step is to estimate the average job response time.
Authors consider two alternative strategies to estimate the average job response time: Tripathi-
based [12]: this strategy corresponds to the approach adopted by the authors of the reference
model and the Fork/Join-based [13]. The evaluation results show that the second approach pro-
vides more accurate results.

According to the model validation results the proposed model produces estimates of average
job response time that deviate from measurements of a real execution by less than 15%. In
the paper authors concentrated on the average job response time, but they mentioned that other
performance metrics, such as throughput and resource utilization, can also be computed using
the same approach.

Although this model does not capture the dynamic resource allocation and it has a fixed
amount of threads to process map and reduce tasks per node as one of the input parameters, it
has important advantages in comparison with previous models. First of all, unlike Herodotous’s
models where there is no resource contention between tasks, this model is taking into account
the queuing delays due to the contention at shared resources. Secondly, it is able to capture the
synchronization delays introduced by the communication between map and reduce tasks. ARIA

12

and Tetris are not considering this property of MapReduce job execution. Furthermore, it tackled
the problem of estimation the average response time of parallel phases of job execution.

4. Proposed Solution
In this section, we describe the proposed analytical MapReduce performance cost model for
Hadoop 2.x taking into consideration significant changes in the architecture with appearance of
YARN and the dynamic resource allocation. The objective is to develop an efficient algorithm to
approximately estimate two measures of interest: the mean response time of individual tasks and
the mean response time for a job. In addition to mathematical representation, we also provide the
logical representation of algorithm in terms of BPMN (Business Process Model and Notation).

As a basis of our MapReduce performance model for Hadoop 2.x, we decided to take the
analytical performance model for MapReduce workloads proposed for Hadoop 1.x. in [19]. For
constructing the performance model they proposed to use the reference model with dynamic
precedence tree construction. According to our research on existing cost models for Hadoop
1.x., unlike others, this model is able to capture the queueing delays due the contention at shared
resources and takes into account the pipeline parallelism of map and reduce tasks. Our main
challenges were how to construct the precedence tree taking into consideration the dynamic re-
source allocation, as there is no predefined slot configuration per map and reduce tasks in the
Hadoop 2.x and how to capture the synchronization delays introduced by the pipeline that occurs
among maps and shuffle-sorts.

4.1 Input Cost Parameters
We have a distributed network with the amount of computers equal to numNodes, all of them
have the same technical characteristics. The workload is composed by N jobs executing concur-
rently in the system. Each job has mi map tasks and ri reduce tasks. We are not dividing the
map task into phases. As a partial sort is performed after each shuffle, we group each pair of
shuffle and sort in a single subtask called shuffle-sort. After all partial sorts are finished, a final
sort, followed by the final phase that applies the reduce function, is sequentially executed. We
group these two phases into one merge subtask. Thus, according to our terminology, the reduce
task is divided into following subtasks: shuffle-sort and merge.

The input parameters for our model are presented in the Table 4.1.

4.2 The Modified Mean Value Analysis (MVA) Algorithm
To solve the queueing network model, we use the modified Mean Value Analysis. An algorithm
to solve the MVA for a closed network system initially was proposed by Reiser and Lavenberg
in [11] and it underlies in the reference model [12] on top of each, we build our analytical per-
formance cost model. Bellow we describe the main steps of the algorithm and our assumptions.

13

Table 4.1: Input parameters for Performance Cost Model
Notation Input Parameter

Configuration parameters
numNodes Number of Nodes
cpuPerNode Number of CPU per node
discPerNode Number of disks per node

Workload parameters
Di,k Mean service demand of task class i in center k
m Number of map tasks
r Number of reduce tasks

MaxMapPerNode The maximum number of containers per node for map tasks
MaxReducePerNode The maximum number of containers per node for reduce tasks

+ all from Herodotous’s Model [3] To initialize the task response time

Suppose a system with C task classes and K service centers. Let ~N be a vector defining the
number of tasks of each class in the system (workload), Sjk is the average demand of class j task
on service center k (the average amount of time).
The main steps of the algorithm are presented in the figure below.

Figure 4.1: The main steps of Modified MVA algorithm

The algorithm consists of 6 main activities: A1-A6. We start by initializing the average res-
idence time of each type of task at each service center and the average response time of each
task in the system. Then based on the average response time of each individual task precedence
tree is constructed. The next step is to take into account the effects of the queuing delays by fac-
tors representing the overlap in the execution times of tasks belonging to the same job (intra-job
overlap) and tasks belonging to different jobs (inter-job overlap). These overlaps factors produce
the new estimates of task average response time. The final step is to apply the convergence test
on the new estimates of average response time. In case of convergence test fails we return to the
construction of precedence tree step trying to build a new more accurate precedence tree based
on estimates of task response time obtained during the previous iteration. In case of current esti-
mates are close enough to the previous ones, it means the end of algorithm, and as a result a final
job average response time is produced.

In the following subsections we explain the activities of the modified MVA algorithm. In
particular, we extensively explain our modification of precedence tree construction procedure in
subsection 4.2.2.

14

4.2.1 Initialization of task response time
Initialization process consists of two sub processes that can run in parallel: initializing the aver-
age residence time of each type of task at each service center and the average response time of
each task in the system. We will consider 2 types of service centers: CPU&Memory and Net-
work. For initializing the residence time, we take the average of residence time from the history
of real Hadoop job executions. To initialize the tasks response time, we can apply the following
approaches:
• Using sample techniques - taking the average of task response time from job profile.
• Obtain from the Herodotou’s cost models [3] . We can assume that first all map tasks will be

executed then reduce tasks. Thus, we will give all available resources to the map tasks and
then to the reduce tasks. Based on this assumption we can apply Herodotou’s formulas for
map and reduce response time estimation. In Herodotou’s cost models, map task execution
was divided into five phases: Read, Map, Collect, Spill, Merge. The reduce task was divided
into four phases: Shuffle, Merge, Reduce and Write. In our model each reduce is composed
by m shuffle-sort subtasks and one merge subtask. Thus, we can initialize the map and
reduce task response time applying Herodotou’s cost formulas for a single map and reduce
task respectively. The overall cost for a single reduce task according to [3] can be calculated
as follows:

totalMapT ime =


cReadPhaseT ime+ cMapPhaseT ime+

cWritePhaseT ime, if pNumReducers = 0;
cReadPhaseT ime+ cMapPhaseT ime+ cCollectPhaseT ime+

cSpillPhaseT ime+ cMergePhaseT ime, if pNumReducers > 0;

(4.1)

According to our terminology, the reduce task is divided into following subtasks: shuffle-sort
and merge. Then the overall cost for a single reduce task according to [3] can be estimated
as:

shuffleSortTask = cSchufflePhaseT ime (4.2)

merge = cMergePhaseT ime+ cReducePhaseT ime (4.3)

This approach should guarantee the less number of iterations of algorithm due to more accu-
rate response time initialization and, as consequence, the faster algorithm convergence.

4.2.2 Building precedence tree
In Appendix B we provide an example of timeline construction and precedence tree building
procedure.

In the precedence tree, each leaf represents a task and each internal node is an operator
describing the constraints in the execution of the tasks. We will consider a precedence binary
tree built from 2 types of primitive operators: serial (S) and parallel-and (Pa). S operator is used
to connect tasks that run sequentially, whereas Pa operator connects tasks that run in parallel.
Our main goal with the precedence tree is to capture the execution flow of the job, identifying
the parallel or serial order of the execution of individual tasks and their inter-dependencies. To be
able to obtain as accurate estimates of task response time as possible, we rebuild the precedence

15

tree at each iteration of the algorithm. The complexity analysis of building precedence tree
procedure can be found in Subsection 4.3.

The precedence tree depends on the response time of individual tasks and is built using a
task response timeline. Based on the obtained timeline the precedence tree can be constructed
uniquely up to graph isomorphism. To be able to distinguish the parallel and sequential task
executions, we have to identify the beginning of a new phase in a timeline. Then, tasks within
the same phase are executed in parallel, meanwhile tasks from different phases are executed
sequentially.

The algorithm for timeline construction will be presented below. For better understanding
the key steps of the algorithm we need to consider the main factors that could effect the timeline
construction process. The core assumptions and factors that influence on the timeline construc-
tion process can be divided into two subgroups - related with the job scheduling and resource
management system.

The first subgroup, related with the job scheduling, consists of the following factors:
1. We assume that RM has a Capacity scheduler as it is the default scheduler that comes with the

Hadoop YARN distribution. The fundamental unit of Capacity scheduler is a queue. A queue
is either a logical collection of applications submitted by various users or a composition of
more queues. For simplicity, we assume that we do not have any hierarchical queues and
we have only one root queue. Thus, resource allocation within applications will be in FIFO
order,i.e., the priority will be given to the first application in the queue.

2. Due to architectural changes, some responsibilities of job scheduling are dedicated to the
AM. We have to determine the way to distribute containers for tasks within different nodes.
Looking through the source code of MapReduce Application Master (package
org.apache.hadoop.mapreduce.v2.app.rm; RMContainerAllocator.java class), we found that
map and reduce tasks have different lifecycles that are presented in the figures below.

Figure 4.2: Lifecycle of map task

Figure 4.3: Lifecycle of reduce task
Vocabulary Used:
pending→ requests which are NOT yet sent to RM
scheduled→requests which are sent to RM but not yet assigned
assigned→ requests which are assigned to a container
completed→ request corresponding to which container has completed

3. Ignore late binding. We are assuming that MapReduce AM will use requested containers for
the same type of tasks as originally requested.

The second subgroup, that is related with resource management, is composed of the following
factors and assumptions:

16

1. In the resource request object containers can have different priorities. Higher-priority requests
of an application are served first by the ResourceManager. There is no cross-application im-
plication of priorities. According to the source code of MapReduce AM (package org.apache.
hadoop.mapreduce.v2.app.rm; RMContainerAllocator class) MapReduce AM assigns a higher
priority to containers needed for the Map tasks and a lower priority for the Reduce tasks’ con-
tainers, with default priorities values equal to 20 and 10 correspondingly. This finding allows
us to provide a container first to map task and after to reduce task (depending on slow start
configuration parameter and the amount of finished map tasks.)

2. Assigning containers for map tasks mainly depends on whether we consider or not locality
constraints (configuration parameter). If we are taking into account locality constraints then
we have to obey three rules:
• try to assign to all nodes first to match node local
• try to match all rack local
• assign remaining

In our model, we consider a node locality constraints for map task and ignore locality con-
straints for reduce tasks. In case of ignoring the locality constraints, we distribute containers
for tasks uniformly among nodes with the highest remaining capacity. Assuming that all
nodes have the same capacity, we will take into consideration the occupancy rate and assign
containers to the nodes with the lowest occupancy rate value.
Container allocation process for reduce tasks conform to the following algorithm:
• Check for slow start. If there are enough completed map tasks (by default mapreduce.job.

reduce.slowstart.completedmaps = 5%) go to the second step.
• Check if all maps are assigned:

no→ schedule reducers based on the percentage of completed map tasks (conf parameter)
yes→ schedule all reduce tasks (map output locality is not taking into consideration, re-
quest ask for a containers on any host/rack).

The last rule that we have to consider is how to divide the timeline into phases: all tasks
within the same phase are executed in parallel, and tasks that belong to different phases are exe-
cuted sequentially. It means that each start or end of the task indicates the start of new phase.

As a summary, we present below an algorithm for the timeline construction. Consider-
ing that map tasks have higher priority than reduce tasks. We start in lines 1-10 to distribute
containers for map tasks, taking into account the node locality constraints. In case of slow
start is set and there are enough completed map tasks, we start to distribute containers for
reduce tasks. Further, in lines 11-24 we distribute the rest of required containers for reduce
tasks.

1: for all requested containers for map tasks do
2: if (slow start is set) and

(the percentage of completed map tasks is greater 5%) and
(there are requested containers for reduce tasks)
then

3: Distribute container for reduce task among nodes with the highest capacity rate;

17

4: Reduce the amount of requested containers for reduce tasks by 1;
5: end if
6: Distribute container among nodes considering the node locality constraints;
7: Fix the start and end time of map task;
8: Add map task to the set of completed map tasks;
9: end for

10: if slow start is set then
11: for all distrubuted containers for reduce tasks do
12: for all completed map tasks do
13: Fix the start and end time of shuffle-sort phase for map task;
14: end for
15: Fix the start and the end of merge task;
16: end for
17: end if
18: for all requested containers for reduce tasks do
19: Distribute container among nodes with the highest capacity rate;
20: for all completed map tasks do
21: Fix the start and end time of shuffle-sort phase for map task;
22: end for
23: Fix the start and the end of merge task;
24: end for

4.2.3 Estimation of the Intra- and Inter- job overlaps factors
For a system with multiple classes of tasks the queueing delay of task i class due to class j task
is directly proportional to their overlaps [22]. We are going to consider two types of overlaps
factors: the intrajob overlap factor αij∀i, j - taskID’s from the same job and interjob overlap
factor βkr∀k, r - taskID’s from different jobs. The intrajob overlap factor measures the overlaps
between tasks from the same job meanwhile the interjob overlap factors reflect overlaps between
tasks from different jobs. In the Figure 4.4 we provide an example for intra- and inter- job over-
lap factors.

Figure 4.4: Intra- and inter- job overlap factors

The algorithm for estimation the overlap factors can be found in Appendix C, Subsection
7.3.3.

18

4.2.4 Average Job Response Time Estimation
There are 2 alternative approaches to estimate the job response time:
1. Tripathi-based[12]:

To estimate the response time of a PA-rooted sub-tree, we approximate the distribution of
response time of each of its children by either an Erlang or a Hyperexponential distribution
depending on the coefficient of variation (CV) of the response times associated with each
child node. We assume that the distribution of X of Erlang type if its CV <= 1, and
Hyperexponential distribution if CV >= 1.
The Precedence tree for MapReduce job will have only 2 types of nodes: PA and S. Knowing
the distribution of leafs we can determine the distribution type (Erlang or Hyperexponential)
for PA and S [12].

2. Fork/join based
We consider the execution of a parallel-phase as a fork-join block, and use previously adopted
estimates of the average response time of fork/joins. One such estimate is the product of the
k − th harmonic function by the maximum average response time of k tasks [13].

Rik = Hk ·max(Ti, Tj),
whereHk =

∑k
i=1

1
i , where k - is the number of children nodes

4.2.5 Estimation of task response time
To solve the queuing network models we apply Mean Value Analysis (MVA)[11], which focuses
on computing the average value of response time for each task. MVA is based on a relation
between the mean waiting time and the mean queue size of a system with one job less.

The algorithm for estimating the task response time consists of 5 main steps that are presented
in the Figure 4.5
The detailed explanation of each step can be found in Appendix C Algorithm 2.

Figure 4.5: The main steps for task response time estimation

4.2.6 Applying convergence test
During the convergence test, we are comparing the Total Response Time from the previous itera-
tion with the Total Response time received in the current iteration. In case they are close enough,
it means the end of algorithm, otherwise we return to the precedence tree construction process
and repeat activities A2-A6. The algorithm is presented bellow.

19

1: if |Rcurr
i −Rprev

i | ≤ ε,∀i then
2: Calculate the Performance Metrics of the System
3: Stop
4: else
5: Set Rprev

i = Rcurr
i ∀i

6: Go to Precedence tree construction process
7: end if

We assume that ε = 10−7, which is the recommended value for MVA [12].Theoretically,
this value provides a good trade-off between the level of accuracy and the complexity of the
algorithm (number of iterations). Moreover, we performed some tests and confirmed that ε =
10−7 gives a good trade-off, with lower values of ε the job response time almost does not change,
meanwhile the number of iterations continues to grow. The test results can be found in Appendix
B, Subsection 7.2.3.

4.3 Complexity Analysis
We can find the complexity of proposed performance model analyzing the complexity of MVA
algorithm and complexity of precedence tree construction.

According to [12], the MVA algorithm is computationally efficient, it has complexity –
O(C2N2K), where C is the number of task classes in the job, N is the number of jobs, K is the
number of service centers.

Precedence tree is recomputed at each iteration of the algorithm. The time complexity to
build the precedence tree is equal to the complexity of timeline construction. The cost to con-
struct this timeline can be identified by the time required to repeatedly search for the next task to
finish until the termination of all the tasks. Let C be the total number of tasks in the timeline and
T be the total number of containers in execution.

C = allMapTasks + allShuffle + sortTasks + allMergeTasks. The total number
of containers T = n × max(pMaxMapsPerNode, pMaxReducePerNode), where n -the
number of nodes; pMaxMapsPerNode and pMaxReducePerNode - the maximum number
of containers for map and reduce tasks correspondingly,

pMaxMapsPerNode = b TotalNodeCapacity

SizeOfContainerForMapTask
c

pMaxReducePerNode = b TotalNodeCapacity

SizeOfContainerForReduceTask
c

Thus, in the worst case, the time complexity to build a precedence tree at each iteration is
given by the search for m+ r(m+ 1) tasks in T containers, that is

O(C×T) = O((m+r(m+1))×(n×max(pMaxMapsPerNode, pMaxReducePerNode))),
where m, r -is the number of map and reduce tasks in the job correspondingly.

The computational cost of the whole solution: O(C2N2K) + O(((m + r(m + 1)) × (n ×
max(pMaxMapsPerNode, pMaxReducePerNode)))× numberOfIterations)

As we can notice, the computational cost of the whole solution is dominated by the MVA
algorithm that has polynomial complexity equal to O(C2N2K).

20

4.4 Implementation details
Our model is implemented in Java programming language. The high level diagram of our so-
lution is presented in the Figure 4.6, while more detailed UML class diagrams can be found in
Appendix D.

Figure 4.6: The high level diagram of implementation solution
The first step is initialization. We have to specify the cluster configuration parameters: the

number of nodes, CPU and memory for each node. We need to determine the total workload
in the cluster - the number of MapReduce jobs that are executed simultaneously. We also need
to initialize each MapReduce job: the number of map and reduce tasks and to determine the
demand matrix (the average time that each task spent in each service center) and the average
response time for each task. For determining the demand matrix we were using information
from the history of real job executions. For initializing the average response time for map and
reduce tasks we were using the what-if analysis component of Starfish [6].

The next step is to construct the performance model. The performance model construction
module can be divided into three main parts:
• Modified MVA algorithm with estimation of intra- and inter- overlap factors and dynamic

precedence tree construction
• Timeline construction
• Precedence tree construction

For the implementation of the modified MVA, we used the algorithm described in Section 4.2.
The implementation of this algorithm was done by extending Java Modeling Library (JML) [25].
As can be seen from UML class diagrams (Figure 7.4.1), the approximate MVA with dynamic
precedence tree construction is extended from SolverMultiClosedAMVA class, i.e., the imple-
mentation of standard approximation of MVA algorithm that was uncluded in JML. We im-
plemented the modification of this class and compared results with the exact MVA, which is
included in JML by default. The test results are presented in Appendix D, Subsection 7.4.2. As
we can see, proposed in [12] approximate MVA algorithm provides more accurate results com-
paring with BardSchweitzerAMVA - approximate MVA algorithm that was included in JML.
Furthermore, based on this approximation of MVA, we implemented approximate MVA with
dynamic precedence tree construction that is described in Section 4.2. We implemented two ap-
proaches: Tripathi-based and fork/join-based for response time estimation. The explanation of
these approaches for the response time estimation can be found in Subsection 4.2.3.

21

Timeline and precedence tree construction procedures were explained in Section 4.2.2. The
representation of precedence tree was implemented extending the Stanford CS Education Library
for binary trees [26].

5. Evaluation
This section presents the results of a set of experiments we performed with the proposed

analytical performance model. We provide the validation results from a comparison of our model
against measurements of a Hadoop 2.x setup. For evaluation we decided to use map-and-reduce-
input heavy jobs that process large amounts of input data and also generate large intermediate
data. The selected application to run on a Hadoop system was wordcount.

We performed a set of 36 experiments analyzing the job response time in terms of following
parameters:
• the number of nodes: 4,6,8;
• the size of input data: 0.5GB, 1GB, 10GB;
• the number of jobs that are executed simultaneously in the cluster: 1,2,3,4.

Each node in the cluster has the same technical characteristics:
• 2x Intel Xeon E5-2630L v2 a 2.40 GHz
• 128 GB de memria RAM
• 1 disc dur d’1 TB SATA-3
• 4 targes de xarxa Intel Gigabit Ethernet

For each experiment we analyze the job response time fixing two parameters and one is
changing.

First, we present the response time for different number of jobs that are executed simultane-
ously in the cluster (from 1 to 4) on different number of nodes (4,6,8) and the fixed size of input
data equal to 0.5GB. Results are shown below.

Number of jobs: 1 Number of jobs: 3

22

Number of jobs: 3 Number of jobs: 4

As we can see from the graphs, the Fork/join based approach provides more accurate results,
with average error≈ 15%, meanwhile the Tripathi-based gives us less accurate estimation of job
response time with error ≈ 25%.

The second series of graphs that we would like to present show the response time depending
on the number of jobs that are executed simultaneously in the cluster on different number of
nodes. We performed experiments for the number of nodes equal to 4,6, and 8. Results are
presented below.

Number of nodes: 4 Number of nodes: 6

Number of nodes: 8

Analyzing graphs we can conclude that Fork-join based approach gives more accurate results.
We repeated the same experiments for input equal to 1GB and 10 GB. Results are in the

tables below. As for the input 0.5, Fork/join based approach provides more precise estimations
with the average error ≈ 15% for the input size = 1GB and error ≈ 18% for the input size equal
to 10GB. The error using the Tripathi-based approach is noticeably higher - ≈ 24% and 40% for

23

1GB and 10GB correspondingly.
The complexity (the maximal depth) of precedence tree is directly proportional to the size

of input data, the number of map and reduce tasks will increase with the increasing size of input
data. In both approaches, we calculate the job response time applying rules, that were described
in Subsection 4.2.4, going bottom-up, accumulating errors. Thus, we obtained the higher error
values for the bigger input data size.

Results for 1GB
The number of nodes/response time(sec); fixed number of jobs

Number of jobs: 3 Number of jobs: 4

The number of jobs/response time(sec); fixed number of nodes
Number of nodes: 8

More graphs for 1GB input size can be found in Appendix D, Subsection 7.4.3.

24

Results for 10GB
The number of nodes/response time(sec); fixed number of jobs

Number of jobs: 3 Number of jobs: 3

The number of nodes/response time(sec); fixed number of jobs

Number of nodes: 8

More graphs for 10GB input size can be found in Appendix D, Subsection 7.4.3.
In conclusion, we can notice that the Fork/join based approach provides enough accurate

estimation of job response time with error between 12% and 17% depending on the input size,
meanwhile the Tripathi-based approach shows worse results with an error of more than 40% for
large volumes of data. Our future plan will be to tune our model for providing better results for
bigger input sizes.

25

6. Conclusions and Future Work
In this thesis, we tackled the challenge of creating the MapReduce performance model for

Hadoop 2.x, which takes into consideration queuing delays due to contention at shared resources,
and synchronization delays due to precedence constraints among tasks that cooperate in the same
job(map and reduce phases). The modeling approach extends the solution proposed for Hadoop
1.x in [19], which was based on reference model where the execution flow of a job was pre-
sented by precedence tree and the contention at the physical resources were captured by a closed
queuing network. Our main contributions is the adaptation of existing solution to Hadoop 2.x..
Considering changes in the architecture of the second version of Hadoop and taking into account
the dynamic resource allocation, we created the method for timeline construction based on which
the precedence tree is built.

We validated our model against measurements of a real Hadoop setup for different number
of jobs that were executed simultaneously. Our experiments showed the effectiveness of our
approach: the average error of job response time estimation is around 16%. Our model can
be used for theoretically estimation of the jobs response time at a significantly lower cost than
simulation and experimental evaluation of real setups. It can also be helpful in critical decision
making in workload management and resource capacity planning.

Our future plans focus on the tuning of provided performance model in order to decrease the
error of job response time estimation. Furthermore, we are planning to extend our model to be
able to estimate the amount of consumed resources per each task and the whole job.

26

7. Appendix

7.1 Appendix A
The constructed analytical model is based on task profiles. Task demands of four types of re-
sources are considered: CPU cores, Memory, Disk and Network bandwidth. For every resource
r are determined: the capacity of that resource on machine i as cri , the demand of task j on
resource r as drj .

The model provides the estimation for job duration:

durationj = max



fdiskR
ij∑
t X

cpu,t

i∗
j
j

,
fdiskW
j∑

t X
diskW,t

i∗
j
j

,

∀i fdiskR
j∑

t X
diskR,t
ij

,∑
i6=i∗

j
fdiskR
ij∑

t X
netIn,t

i∗
j
j

,

∀i 6= i∗j
fdiskR
ij∑

t X
netOut,t
ij


, (7.1)

where Xr,t
ij - task j is allocated units of resource type r on machine i, at time t. From top to

bottom terms correspond to:
• cpu cycles, writing output to local-disk;
• reading from disks;
• network bandwidth into the machine that runs the task;
• network bandwidth out of other machines that have task input.

It is also necessary to take into account the following constraints:
• The cumulative resource usage on a machine i at any given time cannot exceed its capacity:∑

j

Xr,t
i,j ≤ C

r
i ∀i, t, r (7.2)

• Tasks need no more than their peak requirements and no resources are allocated when tasks
are inactive.

0 ≤ Xr,t
i,j ≤ d

r
i∀i, t, r /∈ (7.3)

∀i, t, rXr,t
i,j = 0 if t /∈ [startj , startj + durationj] (7.4)

• The cumulative resource usage on a machine i at any given time cannot exceed its capacity:

startj+durationj∑
t=startj

Y t
i,j =

{
durationj ,machinei = i∗j
0

(7.5)

Then the problem of finding the optimal job schedule is equivalent to the optimization prob-
lem of minimizing the total makespan:

Makespan = maxjobJmaxtaski∈Jmaxtimet(Y
t
ij < 0) (7.6)

where Y t
ij - the indicator variable that is 1 if task j is allocated to machine i at time t, i∗j - the

machine that task j is scheduled at.

27

7.2 Appendix B

7.2.1 Example of building a precedence tree
Assume that we have input data on n1 and n2 nodes and replicas on n3 and n4 correspondingly.
All nodes have the same capacity. n = 4;m = 4; r = 1; where n - total number of nodes, m -
number of containers for map tasks, r - number of containers for reduce tasks.
ResourceRequest Object:

Number of containers priority size locality constraints
2 20 x n1 For map tasks
2 20 x n2 For map tasks
1 10 x ∗ For reduce tasks(shuffle-sort + merge)

Timeline construction (considering host locality constraints) is presented in the Figure 7.1.
The Precedence tree is constructed based on timeline and presented in the Figure bellow.

Figure 7.1: Example of timeline construction

28

Figure 7.2: Example of Precedence tree construction

As we can see from this example, it is not important on which node we receive container per
map or reduce task, it does not influence the precedence tree construction.

29

7.2.2 Finding the optimal value for ε

We performed an experiment for finding the optimal value for epsilon, by running the Hadoop
example for Pi value estimation.
bin/hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-2.7.2.jar pi 2 10000000.
The results are presented below.

ε job execution time(sec) difference iteratioins
10−3 27.5180319668948 27.5180319668948 3
10−4 27.5196451587285 0.00161319183370 5
10−5 27.51966550911 0.0000203503814972 6
10−6 27.5196671285146 0.0000016194046033 7
10−7 27.5196672782758 0.0000001497611990 9
10−8 27.5196672628305 0.0000000154453019 10
10−9 27.5196672677622 0.0000000049316995 12
10−10 27.5196672680584 0.0000000002962004 13
10−11 27.5196672680132 0.0000000000451976 15
10−12 27.5196672680109 0.0000000000023022 17
10−13 27.5196672680107 0.0000000000001990 18
10−14 27.5196672680107 0.0000000000000000 20
10−15 27.5196672680107 0.0000000000000000 21

Figure 7.3: Dependence between ε and Job response time

30

7.3 Appendix C

7.3.1 Modified MVA using iterative approximation

Algorithm 1 Modified MVA using iterative approximation
[S1] Initialization
Initialize Rjk(~N) ∀j = 1..C; k = 1..K - the residence response time of task class i in the
center k.
Set the tolerance constant ε.
[S2] Construct Precedence Tree
[S3] Estimate the intra αij and inter βij overlap factors using the Algorithm3 “Estima-
tion of Overlap Factors ”.
[S4] Estimate Task Response Time using the Algorithm2 “Response Time Estimation”
[S5] Convergence Test
if |Rcurr

i −Rprev
i | ≤ ε,∀i then

Calculate the Performance Metrics of the System
Stop

else
Set Rprev

i = Rcurr
i ∀i

Go to step [S2]
end if

31

7.3.2 Response Time Estimation

Algorithm 2 Response Time Estimation
/* Estimates the mean response time of each task class, assuming that the overlap factors αij , βij
are given, ∀i, j */

[S1] Estimate the Average Response Time of class j task in center k when the task popu-
lation is given by

−−−−→
N − 1i

Initialize Rjk(~N)∀j = 1..C; k = 1..K - the residence response time of task class i in the
center k.

Rjk(~N − ~1i) ≈

Rjk(~N)− (1
N αji +

N−1
N βji) · Sjk·Rik(~N)∑K

k=1 Ri,k(~N)
, if j 6= i;

Rjk(~N)− βji · Sjk·Rik(~N)∑K
k=1 Ri,k(~N)

, if i = j;

[S2] Estimate the Mean Queue Length at each queueing center

Qjk(~N −~1i) ≈


Nj×Rjk(~N−~1i)∑K
k=1 Rj,k(~N−~1i)

, if i 6= j;
(Nj−1)×Rjk(~N−~1i)∑K

k=1 Rj,k(~N−~1i)
, if i = j;

[S3] Estimate the Average Queue Length as seen by arriving task i

Aik(~N) =
1

N

C∑
j=1,j 6=i

αijQjk(~N −~1i) +
N − 1

N

C∑
j=1,j 6=i

βijQjk(~N −~1i)

[S4] Estimate the Mean Response Time at each center

Rik(~N) = Sik(1 +Aik(~N))

[S5] Estimate the Total Response Time

Ri(~N) =

K∑
k=1

Rik(~N)

32

7.3.3 Estimation of Overlap Factors

Algorithm 3 Estimation of Overlap Factors
/* Input: Rifor ∀i; Output: αij , βijfor ∀i, j */

[S1] For each internal node Ji of the composition tree from bottom to the top
[S1.1] Compute the mean and variance of the response time of a subjob Ji,Ri, combined
from the left and right subtrees by Equations 21-39 from [12]
[S1.2] Compute the intra overlap timeLX(Ti, Tj) where Ti and Tj are the tasks belong to
the left and the right subtree respectively.
Given J = J1 � J2, � ∈ {+,∨,∧, \f}
We wish to find out Lx(Ti, Tj),∀ Ti ∈ J1and Tj ∈ J2
If � = + or \f , Lx(Ti, Tj) = 0
We need to consider J = J1 ∧ J2 or J = J1 ∨ J2,
where J1 = J11 + J12 + . . .+ J1n , J2 = J21 + J22 + . . .+ J2m,
Jij are of types PA(and),PO(or) or Pf (probabilistic fork)
Lx(Ti, Tj) ≈ Pr(Ti|J1i) · Pr(Tj |J2j) · Lx(J1i, J2j) =

Ri

R1i
· Rj

R2j
· Lx(J1i, J2j)

[S1.3] Compute αij for task Ti and Tj from Ri and LX(Ti, Tj) by equation:
αij =

Lx(Ti,Tj)

Ri(~N)

[S2] Compute the inter overlap time LITi, Tj
LI(Ti, Tj) = P (Tj |J0) · LI(Ti, J0),
where P (Tj |J0) - is a conditional probability that Ti “sees” Tj in the system while J0 is in the
system, Tj belongd to J0; LI(Ti, J0) - is the interjob overlap time between Ti and J0
P (Tj |J0) ≈ Rj

R0

LI(Ti, J0) = Ri,
where R0 is the mean response time distribution of Ji, Ti arrives at any point in the response
time of J0 with equal probability.
Finally, we obtain: LI(Ti, Tj) =

Rj

R0
·Ri

[S3] Compute the inter overlap factor βij
βij =

LI(Ti,Tj)

Ri(~N)

33

7.4 Appendix D

7.4.1 UML class diagrams
External libraries, Implemented classes

34

7.4.2 Comparison of results of modified AMVA, BardSchweitzerAMVA
and exact MVA solution

N - is the number of job that are executed simultaneously.

Table 7.1: Comparison of modified AMVA, BardSchweitzerAMVA and
exact MVA solution

N exactMVA (sec) BardSchweitzerAMVA modifiedAMVA Abs.Difference for
BardSchweitzer-
AMVA

Abs.Difference for modi-
fiedAMVA

1 261 261 261 0 0
2 345.7547892720306 350.0807247235834 344.3687936473084 4.325935451552766 1.3859956247222271
3 437.2496841825314 447.00707268311027 437.2763141446204 9.757388500578884 0.026629962089032233
4 534.8833901198851 550.1792659206093 538.1189989673728 15.295875800724161 3.235608847487697
5 637.9181859050525 657.9215087842349 644.8977437118436 20.003322879182406 6.979557806791149
6 745.496078952993 768.8651176953447 755.7485594451655 23.369038742351677 10.25248049217248
7 856.7116398307605 882.0290742318098 869.2848734602655 25.31743440104924 12.573233629505012
8 970.7005749496686 996.7480913970354 984.5880746396457 26.047516447366775 13.887499689977062
9 1086.7091081136948 1112.5769875539704 1101.0744966297261 25.8678794402756 14.365388516031317

10 1204.1288555865292 1229.215632826835 1218.3740207639073 25.086777240305764 14.245165177378112
11 1322.499684261118 1346.458166533383 1336.2479678559735 23.958482272264973 13.748283594855366
12 1441.4918447986586 1464.1605031030206 1454.5386130020652 22.668658304361998 13.0467682034066
13 1560.8792893925 1582.219631432593 1573.139024495622 21.34034204009299 12.259735103122011
14 1680.512613571095 1700.5603634378738 1691.9748073804262 20.04774986677876 11.462193809331211
15 1800.2959921597972 1819.1268078490707 1810.9929611715727 18.83081568927355 10.696969011775536
16 1920.169471526971 1937.8766616671485 1930.1548942873922 17.707190140177545 9.985422760421216
17 2040.0963073580567 2056.7773965606007 2049.431945064978 16.681089202543944 9.335637706921489
18 2160.0543657131157 2175.803634396504 2168.8024425758704 15.749268683388436 8.748076862754715
19 2280.030506872071 2294.935312244442 2288.2497347980047 14.904805372370902 8.219227925933865
20 2400.0170269795617 2414.1563772783884 2407.7608381217665 14.139350298826685 7.743811142204777
21 2520.009457339568 2533.453843633635 2527.325494492912 13.444386294067044 7.316037153344041
22 2640.0052298075907 2652.817100652394 2646.9355013908303 12.811870844803252 6.930271583239573
23 2760.0028804248714 2772.237398484391 2766.58422785947 12.234518059519814 6.581347434598683
24 2880.001580626117 2891.7074711469236 2886.2662596339974 11.705890520806406 6.264679007880204
25 3000.000864437056 3011.221199692406 3005.9771352977345 11.220335255350165 5.976270860678596
26 3120.000471285417 3130.7734464932946 3125.7131475945394 10.772975207877607 5.712676309122344
27 3240.000256202269 3250.359837332084 3245.471192027678 10.35958112981507 5.470935825409015
28 3360.0001389060662 3369.9766323370714 3365.2486502215174 9.97649343100511 5.248511315451196
29 3480.0000751242533 3489.6206156458825 3485.043299146979 9.62054052162921 5.043224022725553
30 3600.00004053527 3609.2890072037226 3604.8532398054226 9.288966668452758 4.8531992701528
31 3720.0000218245855 3728.9793917096817 3724.6768407049244 8.979369885096276 4.676818880338942
32 3840.000011726781 3848.6896609619894 3844.5126926914513 8.689649235208435 4.5126809646703805
33 3960.0000062890604 3968.4179667572125 3964.359572575815 8.41796046815216 4.359566286754671
34 4080.0000033667948 4088.1626821654922 4084.2164136322367 8.16267879869747 4.216410265441937

35

35 4200.000001799353 4207.922369500777 4204.0822815083975 7.9223677014233544 4.082279709044087
36 4320.000000960122 4327.695753678406 4323.956354429184 7.695752718283984 3.9563534690623783
37 4440.000000511547 4447.481699935323 4443.837918099399 7.481699423776263 3.8379175878517344
38 4560.000000272163 4567.279195104331 4563.726307136005 7.279194832168287 3.726306863842183
39 4680.000000144606 4687.087331800097 4683.620960978221 7.087331655490743 3.620960833614845
40 4800.000000076734 4806.905295003596 4803.521369589227 6.905294926861643 3.521369512493038
41 4920.000000040669 4926.732350632195 4923.427076554636 6.732350591526483 3.427076513967222
42 5040.00000002153 5046.567835761682 5043.337672247662 6.567835740152077 3.3376722261327814
43 5160.000000011386 5166.411150228908 5163.252788009515 6.411150217521936 3.2527879981289516
44 5280.000000006014 5286.261749393421 5283.1720911739385 6.26174938740769 3.1720911679249184
45 5400.000000003173 5406.119137876043 5403.095280796971 6.119137872869942 3.0952807937974285
46 5520.0000000016735 5525.982864124312 5523.022083978352 5.982864122638603 3.022083976678914
47 5640.00000000088 5645.852515680363 5642.952252681459 5.852515679482167 2.9522526805785674
48 5760.000000000464 5765.727715047817 5762.88556097489 5.727715047352831 2.885560974425971
49 5880.000000000244 5885.608116071158 5882.821802632136 5.608116070914548 2.821802631891842
50 6000.000000000128 6005.493400755124 6002.760789036386 5.493400754995491 2.7607890362578473
51 6120.0000000000655 6125.383276463077 6122.702347346272 5.383276463011498 2.702347346206807
52 6240.000000000036 6245.277473442756 6242.646318885557 5.2774734427193835 2.646318885520486
53 6360.000000000019 6365.175742635733 6362.592557725535 5.175742635713505 2.5925577255156895
54 6480.00000000001 6485.077853733374 6482.54092943389 5.077853733363554 2.5409294338796826
55 6600.0000000000055 6604.98360380209 6602.491309967656 4.983603802084872 2.4913099676505226
56 6720.000000000003 6724.892774470602 6722.443584691371 4.892774470598852 2.4435846913684145
57 6840.000000000002 6844.805192238884 6842.397647504212 4.805192238882228 2.397647504209999
58 6960.0 6964.720686268202 6962.353400062311 4.720686268202371 2.353400062311266
59 7080.000000000001 7084.639097482529 7082.310751084406 4.639097482528086 2.3107510844047283
60 7199.999999999999 7204.560277574555 7202.269615730545 4.560277574555585 2.2696157305463203
61 7320.0 7324.484088110687 7322.229915045146 4.484088110686571 2.2299150451462992
62 7440.0 7444.410399723747 7442.191575456692 4.410399723747105 2.1915754566916803
63 7560.0 7564.339091383526 7562.154528327538 4.339091383525556 2.1545283275381735
64 7680.0 7684.270049736563 7682.1187095480345 4.270049736563124 2.1187095480345306
65 7800.0 7804.203168507625 7802.084059169999 4.203168507625378 2.084059169998909
66 7920.0 7924.1383479562655 7922.050521075149 4.138347956265534 2.050521075148936
67 8039.999999999999 8044.075494382647 8042.01804267468 4.075494382647776 2.0180426746810554
68 8160.000000000001 8164.014519677494 8161.986574636627 4.014519677492899 1.9865746366258463
69 8280.000000000002 8283.955340911665 8281.956070638076 3.95534091166337 1.9560706380743795
70 8400.0 8403.89787996131 8401.926487139617 3.8978799613105366 1.9264871396171657
71 8520.0 8523.842063165093 8521.897783179738 3.84206316509335 1.897783179738326
72 8640.0 8643.78782101033 8641.869920187175 3.7878210103299352 1.869920187175012
73 8760.0 8763.735087845187 8761.842861809348 3.7350878451870813 1.8428618093475961
74 8880.0 8883.683801614565 8881.816573755388 3.6838016145648 1.8165737553881627
75 9000.0 9003.633903617263 9001.791023652257 3.6339036172630585 1.7910236522566265
76 9120.0 9123.585338282606 9121.766180912728 3.5853382826062443 1.7661809127275774
77 9240.0 9243.53805296467 9241.742016614124 3.538052964669987 1.7420166141237132
78 9360.0 9363.491997752477 9361.718503386783 3.491997752476891 1.718503386782686
79 9480.0 9483.44712529481 9481.69561531136 3.4471252948096662 1.6956153113605978

36

80 9600.0 9603.403390638301 9601.673327824159 3.4033906383010617 1.6733278241590597
81 9720.0 9723.360751077644 9721.65161762977 3.3607510776437266 1.651617629770044
82 9840.0 9843.319166016894 9841.630462620375 3.319166016894087 1.630462620374601
83 9960.0 9963.278596840906 9961.609841801132 3.278596840906175 1.6098418011315516
84 10080.0 10083.239006796046 10081.589735221103 3.239006796045942 1.589735221103183
85 10200.0 10203.200360879428 10201.570123909238 3.200360879427535 1.5701239092377364
86 10320.0 10323.162625735958 10321.550989815045 3.1626257359584997 1.5509898150448862
87 10440.0 10443.125769562552 10441.532315753495 3.1257695625517954 1.5323157534949132
88 10560.0 10563.089762018955 10561.514085353801 3.089762018955298 1.5140853538014198
89 10680.0 10683.054574144639 10681.496283011855 3.0545741446385364 1.4962830118547572
90 10800.0 10803.020178281298 10801.4788938459 3.0201782812982856 1.4788938459005294
91 10920.0 10922.986548000508 10921.461903655254 2.9865480005082645 1.461903655253991
92 11040.0 11042.95365803614 11041.445298881847 2.953658036140041 1.445298881846611
93 11160.0 11162.921484221219 11161.42906657431 2.921484221218634 1.4290665743101272
94 11280.0 11282.890003428789 11281.413194354456 2.8900034287889866 1.4131943544562091
95 11400.0 11402.85919351662 11401.39767038595 2.8591935166205076 1.397670385949823
96 11520.0 11522.82903327537 11521.382483345016 2.829033275369511 1.382483345016226
97 11640.0 11642.799502379956 11641.36762239301 2.799502379955811 1.3676223930106062
98 11760.0 11762.770581344023 11761.353077150758 2.770581344022503 1.3530771507575992
99 11880.0 11882.742251477097 11881.33883767447 2.742251477096943 1.338837674469687
100 12000.0 12002.714494844395 12001.324894433184 2.7144948443947214 1.324894433184454

As we can see, modified AMVA algorithm provides more accurate results than BardSchweitzer
AMVA comparing with exact MVA algorithm.

7.4.3 Evaluation results
Blue - real setup; red - Fork/Join based approach, green - Tripathi based approach;
e1 - error of Fork/join based approach;
e2 - error of Tripathi based approach

37

WordCount: O.5GB

Number of nodes/response time(sec); fixed number of jobs
	

Number of jobs: 1 Number of jobs: 2

Number of nodes e1 e2
4 0.14 0.26
6 0.15 0.26
8 0.14 0.23

Number of nodes e1 e2
4 0.2 0.2
6 0.1 0.2
8 0.2 0.2

Number of jobs: 3

Number of jobs: 4

Number of nodes e1 e2
4 0.15 0.23
6 0.15 0.25
8 0.15 0.26

Number of nodes e1 e2
4 0.12 0.25
6 0.13 0.26
8 0.14 0.25

Number of jobs/response time(sec); fixed number of nodes

Number of nodes: 4

Number of nodes: 6

Number of jobs e1 e2
1 0.13 0.26
2 0.15 0.23
3 0.15 0.23
4 0.12 0.25

Number of nodes: 12

Number of jobs e1 e2
1 0.15 0.26
2 0.14 0.23
3 0.15 0.25
4 0.13 0.26

Number of jobs e1 e2
1 0.14 0.23
2 0.21 0.22
3 0.15 0.26
4 0.14 0.25

WordCount: 1GB

Number of nodes/response time(sec); fixed number of jobs
	

Number of jobs: 1 Number of jobs: 2

Number of nodes e1 e2
4 0.12 0.24
6 0.13 0.26
8 0.14 0.25

Number of nodes e1 e2
4 0.13 0.22
6 0.15 0.22
8 0.14 0.23

Number of jobs: 3

Number of jobs: 4

Number of nodes e1 e2
4 0.12 0.24
6 0.14 0.22
8 0.16 0.25

Number of nodes e1 e2
4 0.14 0.24
6 0.14 0.24
8 0.16 0.23

Number of jobs/response time(sec); fixed number of nodes

Number of nodes: 4

Number of nodes: 6

Number of jobs e1 e2
1 0.12 0.25
2 0.13 0.22
3 0.12 0.24
4 0.14 0.24

Number of nodes: 12

Number of jobs e1 e2
1 0.13 0.26
2 0.15 0.22
3 0.14 0.22
4 0.14 0.24

Number of jobs e1 e2
1 0.14 0.25
2 0.14 0.23
3 0.16 0.25
4 0.16 0.23

WordCount: 10GB

Number of nodes/response time(sec); fixed number of jobs
	

Number of jobs: 1 Number of jobs: 2

Number of nodes e1 e2
4 0.17 0.32
6 0.16 0.3
8 0.18 0.4

Number of nodes e1 e2
4 0.16 0.39
6 0.16 0.32
8 0.14 0.36

Number of jobs: 3

Number of jobs: 4

Number of nodes e1 e2
4 0.16 0.35
6 0.18 0.32
8 0.15 0.69

Number of nodes e1 e2
4 0.17 0.31
6 0.16 0.39
8 0.18 0.46

Number of jobs/response time(sec); fixed number of nodes

Number of nodes: 4

Number of nodes: 6

Number of jobs e1 e2
1 0.17 0.32
2 0.16 0.39
3 0.16 0.35
4 0.17 0.31

Number of nodes: 12

Number of jobs e1 e2
1 0.16 0.30
2 0.16 0.32
3 0.18 0.32
4 0.16 0.39

Number of jobs e1 e2
1 0.18 0.28
2 0.14 0.36
3 0.15 0.69
4 0.18 0.46

List of Figures

2.1 Comparison of architecture of Hadoop 1.x and Hadoop 2.x 3
2.2 Job execution process in YARN . 5

4.1 The main steps of Modified MVA algorithm . 14
4.2 Lifecycle of map task . 16
4.3 Lifecycle of reduce task . 16
4.4 Intra- and inter- job overlap factors . 18
4.5 The main steps for task response time estimation 19
4.6 The high level diagram of implementation solution 21

7.1 Example of timeline construction . 28
7.2 Example of Precedence tree construction . 29
7.3 Dependence between ε and Job response time 30

List of Tables

4.1 Input parameters for Performance Cost Model 14

7.1 Comparison of modified AMVA, BardSchweitzerAMVA and exact MVA solution 35

44

References
[1] Dean, J. and Ghemawat, S. “MapReduce: Simplified data processing on large clusters”, Communi-

cations of the ACM 51.1 (2008): 107-113.

[2] Vavilapalli V. K. et al. “Apache hadoop yarn: Yet another resource negotiator”, Proceedings of the
4th annual Symposium on Cloud Computing. – ACM, 2013. – C. 5.

[3] Herodotou, H. “Hadoop Performance Models”, Technical Report, CS-2011-05 Computer Science
Department Duke University, p. 19.

[4] Herodotos Herodotou, Harold Lim, Gang Luo, Nedyalko Borisov, Liang Dong,Fatma Bilgen Cetin,
Shivnath Babu “Starfish: A Selftuning System for Big Data Analytics”, CIDR. Vol. 11. 2011.

[5] Shvachko, Konstantin, et al. “The hadoop distributed file system.”, Mass Storage Systems and Tech-
nologies (MSST), 2010 IEEE 26th Symposium on. IEEE, 2010.

[6] Starfish https://www.cs.duke.edu/starfish/index.html

[7] Apache Hadoop http://hadoop.apache.org

[8] Job Profiler and Job Analyzer Starfish code https://github.com/wangyu0air/Starfish-for-hadoop-2.x

[9] Grandl, Robert, et al “Multi-resource packing for cluster schedulers”, ACM SIGCOMM Computer
Communication Review. Vol. 44. No. 4. ACM, 2014.

[10] Verma, Abhishek, Ludmila Cherkasova, and Roy H. Campbell “ARIA: automatic resource inference
and allocation for mapreduce environments”, Proceedings of the 8th ACM international conference
on Autonomic computing. ACM, 2011.

[11] Reiser, M. and Lavenberg, S. “Mean-Value Analysis of Closed Multichain Queuing Networks”, Jour-
nal of the ACM (JACM) 27.2 (1980): 313-322.

[12] Liang, De-Ron, and Satish K. Tripathi. “On performance prediction of parallel computations with
precedent constraints”, Parallel and Distributed Systems, IEEE Transactions on 11.5 (2000): 491-
508.

[13] Varki, Elizabeth. “Mean value technique for closed fork-join networks”, ACM SIGMETRICS Perfor-
mance Evaluation Review. Vol. 27. No. 1. ACM, 1999.

[14] Bukh, Per Nikolaj D., and Raj Jain. “The art of computer systems performance analysis, techniques
for experimental design, measurement, simulation and modeling”, (1992): 113-115.

[15] Menasce, Daniel A., et al “Performance by design: computer capacity planning by example”, Prentice
Hall Professional, 2004.

[16] Kruskal, Clyde P., and Alan Weiss. “Allocating independent subtasks on parallel processors.”, Soft-
ware Engineering, IEEE Transactions on 10 (1985): 1001-1016.

[17] Thomasian, Alexander, and Paul F. Bay. “Analytic queueing network models for parallel processing
of task systems.”, SComputers, IEEE Transactions on 100.12 (1986): 1045-1054.

[18] Woeginger, Gerhard J. “There is no asymptotic PTAS for two-dimensional vector packing.”, Informa-
tion Processing Letters 64.6 (1997): 293-297.

[19] Vianna, Emanuel, et al. “Analytical performance models for MapReduce workloads.”, International
Journal of Parallel Programming 41.4 (2013): 495-525.

[20] Murthy, Arun C., et al. “Apache Hadoop YARN: Moving Beyond MapReduce and Batch Processing
with Apache Hadoop 2.”, Pearson Education, 2014.

[21] http://ercoppa.github.io/HadoopInternals/ApplicationMaster.html

[22] Mak, Victor W., and Stephen F. Lundstrom. “Predicting performance of parallel computations.”,
IEEE Transactions on Parallel and Distributed Systems 1.3 (1990): 257-270.

45

[23] http://hortonworks.com/blog/apache-hadoop-yarn-resourcemanager/

[24] http://hortonworks.com/blog/apache-hadoop-yarn-nodemanager/

[25] http://jmt.sourceforge.net/

[26] http://cslibrary.stanford.edu/110/BinaryTrees.html

46

