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Abstract

As Amazon AWS[1] describes perfectly "Streaming Data is data that is generated
continuously by thousands of data sources, which typically send in the data records
simultaneously, and in small sizes (order of Kilobytes)”. The sudden interest in
Streaming Data or Data Streams is fuelled by the growing trend in smart devices
which all act as data streams. The need to analyse data from such sources are
at an all time high. One of the very popular and most widely used unsupervised
machine learning algorithm for analysing any data is clustering. It’s main goal
is to segregate and group together objects having similar properties. Clustering
has widespread use such as medical diagnosis, anomaly detection, finding similar
documents (like in News recommendation) and crime analysis. These applications
of clustering makes it very interesting to perform analysis over aforementioned
data stream sources.

Performing clustering over data streams is non-trivial. This is because of the fact
that traditional algorithms uses multiple passes over the data to create clusters,
whereas in data streams, mostly one pass over the data is possible(in a few sce-
narios more than one pass is possible). For this purpose, many stream clustering
algorithms have been proposed and this thesis focuses on such algorithms and aims
to present a holistic survey of such existing algorithms.

The other crucial task of this thesis is to select one of the stream clustering al-
gorithms and implement it in a distributed and scalable environment. This again
is non-trivial as majority of stream clustering algorithms are implemented and
tested on a single machine environment. For implementation, Apache Flink is
chosen as a platform of choice which is a scalable batch and stream processing
engine. The results are then compared against results obtained using MOA, an
open source data stream mining framework which only works on a single machine.

The comparison results are then compiled and presented in the thesis.
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Chapter 1

Introduction

Data stream mining has gained a lot of attention in recent years. It has been
actively studied and different methods and algorithms have been proposed. Clus-
tering is a common unsupervised machine learning task, whose goal is to group
similar items together. It has applications in medical diagnoses, finding similar
documents for example in News recommendation, crime analysis and anomaly

detection.

While several methods exist for clustering, most of them involve several passes
over the data. In data stream applications, systems should perform tasks in real
time and usually do not have access to the entire data set. This means at each
point in time they only have access to the most recent data and in some cases only
to the most recent data item. To address this limitation, several clustering algo-
rithms like partition based algorithms(like CluStream, StreamKM++), density-
grid-based algorithms (like DStream-II,DenStream), Model-Based algorithms(like
SWEM) were proposed that only make one pass over the data and in an evolving

way.

In order to make streaming systems robust and scalable, current Data streaming
systems incorporate a parallel architecture, where data streams are processed in
several computing nodes simultaneously. This characteristic of the current sys-
tems add several complexities that any stream clustering algorithm should take
into account. In addition to that, even though conceptually scalable, most of the
current stream clustering algorithms have been tested on a single machine en-

vironment. Thus, to truly express the power of these algorithms, they must be
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extended and tested in a distributed and parallel architecture after having dealt

with the complexities of the system.

1.1 Motivation

With the revolution in hardware technology and increase in the use of sensors to
record events and data, the need for processing such data which keeps on gen-
erating continuously has increased tremendously. Segregating this data in target
groups have been an age old problem and clustering algorithms try to solve this
problem by grouping samples together based on the commonality of the features.
There are various models which follow different methodology for producing clus-
ters which are discussed in detail later. Although there exists no single algorithm
which is perfect for every situation and thus, producing good result depends on

various other factors.

The data explosion in recent times has made the process of clustering more com-
plex. Existing algorithms are not efficient anymore as there is practically no end
to the data which is being generated. Even though algorithms like K-Means work
well for small to moderate size datasets, it starts crumbling when we account for
huge amounts of data. This is true due to the fact that iterative distance calcula-
tion is needed for every incoming data point against the cluster centers, and this
procedure is the most time intensive task. To solve this issue, efficient methods
of cluster creation were required which can work with data streams where data
is practically infinite. Methods like these also need to scale really well so as to
perform operations on the data in parallel, thus making the overall process even

more efficient.

1.2 Goal

This thesis aims to validate the procedure of performing clustering on a data
stream on a large scale. Our main goal was to perform survey of the existing

stream clustering algorithm and then try and answer the following questions:

1. What are the different methodologies of performing clustering? What are

the basic concepts which are involved?
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2. Which of the algorithms are suitable for large scale clustering?
3. Which algorithms are suitable for clustering over a data stream?

4. As Flink is a comparatively new data processing system, how well does it

behave when a machine learning algorithm is applied on top of it?

Apart from answering such questions, our goal is to pave a path towards imple-
menting stream mining algorithms which is still not very popular but could be

extensively useful.

1.3 Outline

This section deals with the workflow approach that was used to move towards the
completion of the thesis and answer the questions which were mentioned in the

previous section.The subsequent sections are organized as follows:

1. Chapter 2 deals with the introduction to the concept of clustering data
stream, its basic methodology and challenges associated with it.

2. Chapter 3 gives an overview of all the algorithms which were reviewed be-
longing to various classes of clustering algorithms. Also, this chapter includes
the comparative result of all the different algorithms reviewed previously.

3. Chapter 4 deals with the idea behind selecting one of the algorithms for
implementation reviewed in the previous chapter.

4. Chapter 5 involves the implementation details where a brief introduction
to flink systems is presented followed by explanation of the details of the
algorithm implemented and the challenges associated with it.

5. Chapter 6 includes all the experimentation done on the implemented al-
gorithms and the results are compared against results from other data pro-
cessing systems

6. Chapter 7 outlines a brief overview of related work

7. Chapter 8 concludes the thesis by explaining the results obtained and how

could we proceed in the future



Chapter 2

Clustering Data Streams

Clustering is the process of grouping similar data points from a given dataset and
is one of the widely used important data mining task. With the advancement
in technologies and the data explosion, we have a lot of data but not enough
information out of the data. Running data mining task is feasible on small to
moderate sized data sources but when we consider large datasets then processing
such huge datasets become practically infeasible. This is because such amount
of data can’t be stored in memory and processed subsequently. Also, the last
decade has seen a consistent rise in usage of sensors, social networks, real-time

data processing where data is continuously generated as data streams.

Performing data mining tasks on data streams is specifically challenging as most
of the data mining algorithms assume fixed and finite datasets which can be phys-
ically stored and iterations can be performed over them. Similarly, data stream
clustering is not as trivial as clustering on finite datasets as processing data streams
inherently involve a lot of challenges, along with the challenges of the data min-
ing algorithm. The challenges associated with data stream clustering would be

explained in details in section 2.2.

2.1 Methodology

Data stream clustering algorithms basically involve the methodology of handling
and processing the infinite amounts of data coming through the data stream which

may evolve with time or finding a procedure by which data could be stored over

4
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time and then processing it later. There are different methods of processing this

infinite stream of data which are explained as follows [2] [3]:

1. Store and process
In this process, incoming data streams are stored for a given amount of time
and then clustering is performed over the stored data only. This is similar to
a batch process although the accuracy gets affected as this process is done
continuously. Also, it gets infeasible when the data stream is generating data
quickly as the data mining task may take more time than the time it takes
to store the incoming data and fill up the secondary storage. For the reasons
discussed already, this method is not really popular with scientists and it is

generally not used.

2. One-Pass entire stream
In one-pass entire stream processing, the data is clustered by analysing the
incoming data points only once. In this algorithm, the data points which
arrive first becomes the representative of the first cluster and subsequent
points become the representative of the other k-1 cluster in a k cluster sce-
nario. Then, the points which come after the initial set of representative
points are compared against the existing representative points and then it is
assigned to the one which is determined to closest based on the pre-defined
criteria. Finally, when the new point is assigned to a cluster, the represen-

tative point is updated.

Based on the algorithm used, there could be new clusters which could be
generated if the incoming point doesn’t satisfy the pre-defined criteria for
cluster assimilation or 2 clusters could be merged and the new point could

be given its own cluster.

The important thing to note in a one-pass entire stream processing method
is that the clusters are the representation of all the points which has entered

into the stream processing system so far.

3. One-Pass evolving stream processing
In the one-pass evolving stream processing system, unlike the one-pass entire
stream processing, the incoming infinite data stream is considered to be
evolving with time. Hence, over a given period of time the results produced
by the clustering algorithm may change, which means new clusters may

appear over time and other may disappear. In scenarios like this, the evolving
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data streams are processed in such a way that new data points are given
greater importance than older data. For doing this, data stream clustering
algorithms consists of defining windows which are used as updating blocks
and which covers recent data so that the resulting clusters highlight the
updates to the incoming stream rather than considering older data which
might not be relevant anymore. For doing this, 3 different window models

are available:

1. Landmark window 2. Sliding window 3. Damped window

4. Online-Offline stream processing
Online-offline stream processing model is a two-step procedure where the
first step involves keeping a summarized information of the incoming data
stream using a one pass methodology explained previously. This helps in

dealing with 2 challenges associated with the data stream:

(a) It can process fast stream with comparative ease

(b) It overcomes the memory constraints as we don’t need to store any data

points in the memory

Thus, the online component helps in summarizing the dataset in real time
so as to be processed later in the offline component. The offline component
then performs clustering on the summary information. In practice, most of
the stream clustering algorithm employ this 2-step architecture as it enables
capturing dynamic data streams thus enabling detection of concept drift, at
the same time the summary information is accurate enough to give good

quality clusters.

2.2 Challenges

A good clustering algorithm needs to take care of the following restrictions related

to data streams:

1. The data points are continuously pushed out and the speed of arrival of data
depends on the data source, thus it could be really fast or similarly slow.
2. The data stream could be potentially infinite, which means that there could

be no end to the incoming data.
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3. The features and characteristics of the data points which are arriving may
change over time.

4. The data points are potentially one-pass i.e. the data points can be used
only once after which it is discarded, so fetching important characteristics of

the data is really important.

Additionally, for creating good clusters, the clustering algorithms must have the

ability to handle the following challenges before it could be used effectively:

1. Ability to handle noise and outliers in the data - A good clustering
algorithm should address the problem associated with outliers as it tends
to skew the formation of effective clusters. For this, the algorithms should
reject outliers or involve a methodology to not get influenced by it.

2. Ability to handle concept drifts - This challenge is very specific to data
streams and it is very important as well. This is true because a clear distinc-
tion between an outlier and a data point which is evolving with time needs
to be made. The first one needs to be rejected whereas the latter needs to
be accepted and a change in the concept needs to be acknowledged.

3. Ability to handle fast data - As data points from data stream arrive
continuously, the clustering algorithm needs to manage and process them in
real time as traditionally data streams could be huge and thus should be
processed in one-pass.

4. Ability to process data in given memory - The huge amount of data
shouldn’t affect the processing capabilities of the stream. Thus, the clus-
tering algorithm shouldn’t need unlimited memory for the unlimited data
points arriving in the system and it should be able to operate within the
available memory.

5. Ability to handle the curse of dimensionality - With high dimensional
data comes the additional problem of selecting the proper feature vectors
or dimensions which could contribute to creating better clusters. Also, with
high dimensional data comes the problem of additional calculation and ad-
ditional processing thus the algorithm should take into account such factors

so as not to be affected by it.

It should be mentioned at this time that none of the existing data stream clustering
algorithms could solve all the aforementioned challenges. Therefore, the choice of

the algorithm depends highly on the use case.



Chapter 3

Clustering Algorithm Survey

This chapter provides a brief yet comprehensive overview of the literature reviewed,
this includes the various categories of clustering algorithms and a few important
algorithms in each of these categories. These algorithms are divided into groups
based on the methodology used in each one of them. As no single algorithms is
perfect for all scenarios, the advantages of each category of algorithm depends on

the problem which needs to be solved and the data which is available.

The 4 basic categories of clustering algorithms are Partition Based, Hierarchical
Based, Density & Grid Based and Model Based. These categories are defined in
the following section along with the algorithms which were studied and reviewed
for the purpose of survey and comparison. Also, a summary closely related to
each individual paper is presented, so as to present a concise yet fully under-
standable report. Later we also discuss the properties and comparison of all the
algorithms reviewed and in Chapter 4 we select one of the reviewed algorithms for

implementation.

3.1 Partition based

A partition-based clustering algorithm groups together incoming data points into a
fixed number of partitions, where each of the partitions represents a cluster having
the data points with similar characteristics and properties. These clusters are typ-

ically found using a distance measuring metric such as Euclidean, Manhattan etc.,
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which calculates the physical proximity of each of the data point to the representa-
tive point of each cluster. These algorithms in effect are very similar to K-Means
algorithm(put reference) but have been extended to work on streaming data. Some
of the more popular algorithms in this category are STREAM which works on the
LOCALSEARCH algorithm which itself is based on k-median search over data
streams, along with this we have StreamKM++ which tries to solve the prob-
lem using concept called coresets and the very popular CluSTREAM algorithm
which introduces the concept of online-offline processing framework described in 2.
CluStream is also popular because a majority of the clustering algorithm adopts
its concept of online and offline processing as it provides with a very innovative yet
extremely useful method of clustering in addition to dealing with fast streaming
data. The working model of these 3 algorithms are discussed in greater detail in

the following sub sections:

3.1.1 STREAM

STREAM]I4] is one of the older algorithms in this set and even though its per-
formance is not at par with the more recent algorithms, it is essential to include
this in the survey as STREAM motivated more research in the direction of stream

clustering.

STREAM aims to cluster the incoming stream with 2 different algorithms

1. Using the local search[5] algorithm recursively

2. Extend the local search algorithm by relaxing the number of clusters in
intermediate step called as LSEARCH

Clustering using Local Search

The clustering process maintains a forest of assignments where all the roots of
the k trees are medians and the nodes inside the tree are points assigned to the
median. Following is the list of steps of the algorithms described by the authors

as is in [4]

1. Input the first m points; use a bicriterion algorithm to reduce these to O(k)

(say 2k) points. As usual, the weight of each intermediate median is the
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number of points assigned to it in the bicriterion clustering. (Assumem is
a multiple of 2k.) This requires O(f(m)) space, which for a primal dual
algorithm can be O(m?).

2. Repeat the above till m?/(2k) of the original data points are seen. At this
point,m intermediate medians are obtained.

3. Cluster these m first-level medians into 2k second-level medians and proceed.

4. In general, maintain at most m level-i medians, and, on seeing m, generate
2k level-i+1 medians, with the weight of a new median as the sum of the
weights of the intermediate medians assigned to it.

5. After seeing all the original data points, all the intermediate medians are

clustered into k final medians.

The number of levels require by the algorithm is at most O(log(n/m)/log(m/k))
where m = v/ M with M being the size of the memory.

For the bicriterion algorithm used in the first step of the algorithm, localsearch[5]
is used so that the clustering is performed in space linear to m and thus, as the
local search algorithm is quadratic in nature thus the total running time of the

algorithm is dominated by the first step only.

To improve on the time complexity a subquadratic time approximation algorithm

is used which is given by the authors[4] as follows

Draw a sample of size s = v/nk .

Find k£ medians from these s points using the primal dual algorithm in [6]
Assign each of the n original points to its closest median.

Collect the n/s points with the largest assignment distance.

Find k medians from among these n/s points.

SN

At this point 2k medians are obtained.

Thus, algorithm which is provided above gives an O(1) approximation with 2k

medians having constant probability.

Improved Clustering using LSEARCH Algorithm

LSEARCH algorithms relax the requirement of k clusters in the intermediate steps

thus this relaxation helps in reducing the quadratic nature of the local search[5]
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algorithm described in subsection 3.1.1 and thus makes the overall algorithm run

faster.

This algorithm is based on the facility location problem such that the number of
k-medians is unrestricted but each additional center attracts an additional cost

which should be taken care of.

Th goal of the facility location problem is to minimize the cost of facility clustering

by selecting a value of k and a set of centers C, such that

k
FC(N,C) =z|C|+>_> d(z,¢)
i=1i=1
where,
d(x,¢;) is the distance of point x from center ¢;,

z = parameter called facility cost

Also, given the facility location definition, the concept of gain needs to be explained
which the cost one would save(or expend) if a facility needs to be opened at point

x € N.

The following algorithm is proposed by the authors to decrease the number of
iterations from ©(log n) to ©(1) such that the best achievable cost is obtained

faster.

Algorithm InitialSolution (data set N, facility cost z)

1. Reorder data points randomly.
2. Create a cluster center at the first point.

3. For every point after the first:

e Let d = distance from the current point to the nearest existing cluster
center.
e With probability d/z create a new cluster center at the current point;

otherwise, add the current point to the best current cluster.

Given the above described concepts, the complete algorithm consisting of Facility
Location and LSEARCH is given as follows:

Algorithm FL(N,d(.,.),z€,(l,a))
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1. Begin with (1,a) as the current solution.

2. Let C be the cost of the current solution on N. Consider the feasible centers
in random order, and,for each feasible center y, if gain(y) > 0, perform all
advantageous closures and reassignments (as per gain description), to obtain
a new solution (I’; a’). [a’ should assign each point to its closest center in I’

3. Let C’ be the cost of the new solution; if C* < (1 - €)C, return to Step 2.

And following is the LSEARCH algorithms which provides calculates the k-Median

for a given distance function d and for a dataset of size N/

LSEARCH(N,d(.,.).ke,c’€”)

Zmin < 0

Zmaz < Yozen A(x, o) (for xy an arbitrary point in N)
X < (Zmin + Zmaz)/2)

(La) < InitialSolution(N,z)

Randomly pick @(%log k) points as feasible medians
While #medians # k and 2,5, i (1 - €”7)2maz

I

e Let (F,g) be the current solution
e Run FL(N, d, €,(F,g))to obtain a new solution (F’,g’)
o If k < |F'| < 2k, then exit loop.
o If |F'| > 2k, then 2z, < z and z < (Zmin + Zmaz)/2);
else if |F'| < k, then 24 < z and z < (Zmin + Zmaz)/2)
7. Return solution (F’, g’), where each cluster is moved to the center of the

mass of its cluster to simulate a continuous space

The entire LSEARCH algorithm can be summarized as the process of continuously
creating cluster centre with a calculated probability and then reduces the number

of cluster till we have the target number of medians.

Also the running time of LSEARCH is O(nm+nklogk), where m is the number of

facilities opened InitialSolution.

Merits and Limitations

Merits

e One of the first algorithms to solve clustering over streaming data.
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Limitations

Difficult to comprehend and execute.

e No concept drift detection.

Outlier detection not very clear.

Problems in dealing with large amount of high dimensional dataset.

3.1.2 CluStream

Even though CluStream|7] is as old as STREAM|[4], still CluStream is more pop-
ular as it employs a very unique online-offline framework. The entire clustering
process in CluStream is divided into an online micro-clustering component which
requires a very efficient process for storage of statistical summary of the incoming
data stream and an offline macro clustering component which uses the summa-
rized data in order to provide cluster information as and when required by users.
This framework is widely used in many stream clustering algorithms because of

its efficiency in handling data streams.

Clustream Framework

Micro-clustering is an innovative concept to summarize data streams efficiently

and record temporal locality of the data in the data stream at the same time.

For the online process of storing statistical summary, the concept of microclusters
are used, which is similar to the cluster feature vector used in BIRCH [8] with an
extension to store the temporal information as well. This summary information
which are stored in the micro-clusters are used by the offline component, which in

itself is dependent on the user inputs.

These microclusters needs to be stored at specific snapshots such that there is an
effective trade-off between the storage requirements and the ability to fetch the
statistical summary from different time horizons. This is achieved by storing the
snapshots using a pyramidal time frame, so that the cluster statistics could be

analysed from different periods of time.

The concept of microclusters is defined by the authors of CluStream as follows:
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A microcluster for a set of d-dimensional points X;,...X;, with timestampsT;,....T;

is defined as the (2.d + 3) tuple (CF2* , CF1*, CF2', CF1', n) wherein CF2*

and C'F1% each correspond to a vector of d entries.

where the entries of the tuple is defined as follows:

e (F2% - It maintains the sum of squares of data values for each dimension.

Thus, it contains d values where the pth entry of C'F'2? is equal to > (xfj)Q
j=1

e ('F'17- It maintains the sum of the data values for each dimension. Thus, it

also contains d values where the pth entry of C'F'1* is equal to > xfj_
j=1

CF2' - the sum of squares of timestamps T;,...T;,
CF1' - the sum of timestamps T;,...T;,

e n - the number of data points

The summary information can be expressed in an additive way over the different
data points thus making it a natural choice for use in data stream based clustering

algorithms. Also, the micro-cluster for a set of points C is given by C'FT(C)

Online Phase

The online phase of the algorithm is not dependent on any user inputs and is aimed
to maintain statistical summary of the incoming data points at a sufficiently higher
level of granularity for both temporal and spatial information. The online phase

also is also the phase where micro-clusters are formed.

The online phase maintains a total of q micro-clusters at any moment of the
algorithm execution. This value ¢ is determined by the available main memory for
micro clusters storage. Thus, it is generally significantly larger than the natural
number of clusters in the data but also significantly smaller than the total number

of data points, which may be conceptually infinite in streaming sources.

At the start of the algorithm execution, P points are stored on disk from the data

stream and the standard k-means algorithm is applied to create q micro-clusters.

After the aforementioned step, the updation process of the created microclusters
are started. So, whenever a new data point arrives to the system, any 1 of the

following 2 possibilties takes place:
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1. The point is absorbed by one of the existing micro-clusters based on the
closeness of the cluster to the data point, this generally is calculated using
the distance metric using the centroid of the micro-cluster and the data point

and the data point is absorbed to the nearest micro cluster using the additive

property.

2. The point is placed in its own micro-cluster, but the number of micro cluster
is fixed. Thus, the number of other clusters needs to be reduced by one
which can be achieved by either deleting one of the older micro-cluster or

merging 2 microclusters together.

For case 2 where a point is given its own microcluster, relevance timestamp of
cluster M is calculated using the timestamp information stored in the microclus-
ter.So, if for a given micro cluster M, the least relevance stamp is lesser than a
user-defined threshold, that micro-cluster is eliminated and a new micro-cluster is
created with an unique cluster id. In case when the relevance timestamp is greater
for all the available microcluster, it means that all the micro-clusters are compar-
atively new and the value of the relevance timestamp is greater the user-defined
threshold. In such cases, 2 closest microclusters are merged and the new data

point is given its own micro cluster.

Case 2 here is specifically helpful in understanding and capturing concept drift in

the stream.

Offline phase

The offline phase takes into account the compactly stored summary available in
the micro-clusters, thus the constraint of the stream that only one pass over the

data is available does not hold in this scenario.

For the input of the offline phase, the user supplies the number of high level
clusters k which needs to be calculated and the time horizon h over which the
clustering needs to be performed. This choice determines whether the cluster
formed are more detailed or they are rough. The use of pyramidal time frame
comes in handy in this case as it ensures the availability of snapshots which can
be used to calculate approximate micro-clusters for a defined time horizon. The

micro-clusters obtained after applying pyramidal time frame are then clustered
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on a high level to createa smaller number of clusters, with each cluster having
a group of microclusters assigned together, thus each microcluster is treated as

pseudo points for the macro clustering algorithm.

Merits and Limitations

Merits

e Very straightforward to understand and implement.

e Novel approach of capturing temporal activity to cluster feature helps in
achieving clustering over any time horizon.

e The use of online and offline phases helps in capturing essential statistical

information quickly and then generate good clusters.

Limitations

e Clustream is partition based and as any general partition based algorithm,
it is sensitive to outliers.

e The micro-clusters and the macro-clusters generated are spherical in shape
which might not be the case always.

e Dealing with high dimensional data would be slower as it is still dependent

on euclidean distance calculations.

3.1.3 StreamKM-+-+

StreamKM++[9] is the last reviewed algorithm from the partition based concept
and it takes a sample of the data points from the data stream and computes a
small weighted sample of it.It then solves the problem of clustering on the sample
using the K-means++[10] algorithm. To compute this small sample, the authors

propose two novel techniques.

1. Using an approach similar to the K-means++ seeding procedure, a non-
uniform sampling of the incoming data points is done to obtain a small
coresets. This procedure has a running time which does not depend a lot on

the dimensionality of the data.
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2. A new data structure called ”a coreset tree” is proposed by the authors which
significantly speeds up the process of non-uniform sampling required during

the coreset construction process.

To understand the process of using coreset tree, the following few concepts need

to be very briefly:

Coreset Construction

Let P be a set of initial n points from which a set of m points need to be chosen
denoted by S. Thus, the coreset construction can be defined as the procedure of
creating a weighted set over S’ by selecting the set of m points (given by S) using

the KMeans++ seeding procedure.

S’ is obtained by using a weight function on the points from P which are close
to points within set S.Thus, the set S’ denotes the coreset for the StreamKM++
algorithm. This entire procedure of constructing coresets depends linearly on

dimension d and as explained by the authors, pretty easy to construct as well.

Coreset Tree

The problem of using Kmeans++ seeding procedure to select the m sample points
in S is that for each subsequent point, the distance of each point in P needs to
be calculated to its nearest neighbour in S, thus increasing the computation time
when the value of m is very high as it takes O(d.n.m) time to obtain m coreset

points.

This was the reason why the concept of coreset tree was created, as it enables to
compute the points in the sample S by taking points from a subset of P only which
is significantly smaller than n. Thus needing a time of the order of O(d.n.logm)

to compute all m coreset points, provided that the coreset tree is balanced.

Before explaining the procedure of construction, the coreset tree needs to be de-
fined formally. Thus, a coreset tree T is in essence a binary tree which can perform
hierarchical divisive clustering on a given set of points P.So, the process of cluster-

ing starts from a single cluster which is then followed by successive partition into
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two cluster and this continuous partitioning process is repeated until the desired

number of clusters is reached.

As explained by the authors of streamKM++4,the coreset tree, T needs to satisfy

the following properties:

e Each node of T is associated with a cluster in the hierarchical divisive clus-
tering.

e The root of T is associated with the single cluster that contains the whole
point set P .

e The nodes associated with the two sub-clusters of a cluster C are the child

nodes of the node associated with C.

Also for every node v of T, the following attributes needs to be stored:

— A point set P, which is the cluster associated with node v, which is explicitly
stored only in the leaf nodes,

— A representative point ¢, from set of points P, obtained by sampling using
Kmeans++ procedure

— An integer size(v) which represents the number of points in set P, and

— A value cost(v) for the leaf node which is the sum of squared distances over
all points in P, to q,, whereas for the inner nodes its simply the cost of its
children.

The description of the structure of the coreset tree leads to the next step, which

is of constructing the tree.

Construction - Coreset Tree The construction of tree T starts with a single
node, the root, which is associated with all the points in the set P. From this set, a
set of m sample points needs to be computed. Assuming that the current tree has
i leaf nodes, the next sample ¢;;; can be obtained which would be a new cluster

and a new node in the tree T using the following methods:

1. Choose a leaf node | at random.

2. Choose a new sample point denoted by ¢;y; from the subset P, at random.

3. Based on ¢; and ¢;1, split P, into two subclusters and create two child nodes
of [inT.
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The update in the leaf nodes is then propagated upwards until the root of the tree

is reached.

Coreset Creation Methodology

As the coreset tree has been constructed, the leaf nodes of the tree represented by
the sample points ¢, ¢o, ...q,, gives us the the coreset S, where the weight of each
sample point ¢; is given by the number of points for each of the leaf nodes in the
tree. Given that, the algorithm maintains a size of L buckets for the datastream

containing n points where L = [logQ(%) + 2} Following are properties of each
bucket:

1. Bucket By can store any number of points between 0 and m, whereas Bucket
B;(i > 0) is either empty or have exactly m points.
2. At any point, if a bucket B; is full, it consists of a coreset of size m repre-

senting 2¢~!'m points from the data stream.
Accordingly, the bucket filling procedure depends on the following conditions:

e New points from the data stream are always inserted in bucket Bj.

o [f bucket B; is full, all points are moved from B; to B;.1.
— If B;;; is empty, nothing is done
— If B,y is full, compute new coreset of size m using the coreset construc-

tion methodology, from the union of B; and B;y;.

StreamingKM+4+ Algorithm

As the procedure of obtaining the coreset has been clearly described, thus the
entire algorithm can be presented for data stream. The algorithm is described as

follows:
1. Extract a small coreset of size m from the data stream by using merge and
reduce.

2. For the reduce step, get the coresets using the coreset trees by employing

the coreset construction methodology described in subsection 3.1.3.
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3. Run any kmeans algorithm on the coreset of size m, as its smaller than and
even independent of the size of the data stream, thus the results are accurate

and does not depend on the original data points.

Merits and Limitations

Merits

e Comparatively easier to understand and implement.

e Claims to be really fast in regards of creating the coreset tree.

Limitations

e Needs to know the size of the stream (Number of data points) to compute
the number of buckets to be used.
e Not feasible for unlimited size streams

e No drift detection methodology, clusters created over the entire stream.

3.2 Hierarchical based

Hierarchical Clustering: A hierarchical clustering method groups the given data
into a tree of clusters which is useful for data summarization and visualization.

The following algorithms attempts to do hierarchical clustering on streaming data.

3.2.1 BIRCH

BIRCHJ[8] is the oldest algorithm reviewed in this survey and it claims to deal
with large datasets by generating a more compact summary and then use this
summary for clustering. Thus, a singe scan of the data is enough to get decent
clustering result. This property is specifically useful in case of streaming data as
essentially the incoming data from streams are not generally stored as streams
could be potentially infinite and multiple passes over the data is generally time

consuming or simply not possible.
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Clustering Feature and CF-tree

BIRCH summarizes the incoming data points into a set of sub clusters called

Clustering Feature(CF) to reduce the scale of the clustering problem.

Clustering Feature(CF) A CF entry is a triple which contains the summary

information of the incoming data points. It is given as follows:

CF = (N,LS,SS)
where,
N = number of data points in the cluster

L? = Linear sum of N data points SS = Squared sum of N data points

The Cluster features have additive property such that 2 cluster features CF1 and

CF2 can be merged to create a subcluster with cluster feature CF as follows:

CF = CF1+ CF2 = (N1+ N2,LS1 + LS3, SS1 + §52)

Similarly, it has subtractive property which follows the same intuition.

A CF entry for a sub-cluster is not only compact but it also provides accurate
results as it is sufficient for calculating all the measurements which are needed for
BIRCH.

CF Tree A CF tree is a height-balanced tree with two parameters:

1. Branching factor,B for inner node and L for leaf node
2. Threshold T

Each inner node contains at most B entries of the form [C'F;, child;], where i =
1,2, ... ,B. The child; in the node is a pointer to the ¢ — th child node in the tree
and C'F; is the CF entry of the sub-cluster given by the ¢ — th child.

Both the inner node and the leaf node represents a sub-cluster made up of all
the sub-cluster represented by its entries. A leaf node can have at most L entries
where all the entries are CF’s in themselves. Also, every leafnode are constituted

of 2 pointers prev’ and 'next’, so that sequential scans along the leaf ndoes are
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efficiently done. But at the same time, all entries in a leaf node must adhere to a

threshold T, i.e. the diameter/radius of each leaf entry has to be less than T.

As, the structure of the tree has been defined, the procedure of inserting a data
point or an existing subcluster in the tree needs to be defined. This is briefly

discussed as follows:

1. Leaf identification: Find closest closest child node

2. Leaf modification: Absorb the data point or subcluster to the nearest leaf
element such that the threshold criteria T is not violated. If the threshold
criteria is not met, then a new entry needs to be created in the lead node
provided there is enough space for a new entry, else the leaf node is split
using the farthest pair of entries and the remaining entries are arranged in
the 2 leaf nodes based on the distance criteria.

3. Leaf path modification: When a new entry is inserted to a leaf node,
the information in the CF is updated on the entire path from the root to
the leaf. This is specifically simple if the new entry is simply absorbed, but
in the case when the leaf is split into two, then the information about the
new leaf node needs to be inserted into the parent node. This new entry in
the parent non-leaf node could in turn cause a split if not enough space is
available in the inner node. This behaviour in general could be propagated
all the way to the root, and if the root needs to be split as well then in that
case the tree height increases by 1.

4. Merging Refinement: As page sizes are responsible for causing splits
thus,if the order of the incoming data is skewed, then in that case the CF
tree could get skewed and it could have a bad effect on the overall quality of
the clusters. To solve this issue an additional merge can be performed in the
inner nodes where the leaf split propagation ends. This inner node with the
new entry corresponding to the leaf split can be scanned for 2 entries which
are the closest to each other and merge them. The corresponding merge also
results in merging the corresponding child nodes thereby increasing space

for one more entry in the inner node and also increasing page utilisation.

Overall BIRCH algorithm

The BIRCH clustering algorithm consists of 4 phases, a couple of which are op-

tional and are used solely to improve the results. Although, its important to note
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that these optional steps may require additional passes over the data which is not

applicable for true streaming data.

1. Loading - This phases scans all the incoming data and builds the initial
CF-tree in-memory, subject to the available memory. Thus, this phase es-
sentially creates the summary of the incoming data point. This is the most
important phase of BIRCH, as this reduces the problem of clustering data
points to clustering subclusters present in the leaf entries. This is important
because clustering the subclusters are essentially much faster than perform-
ing clustering on the datapoints. Also, this phase removes the outliers as
well, thus the resulting clusters are more accurate.

2. Optional Condensing - This phase is optional and performs the condens-
ing of the intitial CF-tree by rebuilding a smaller CF-tree. It achieves this
by removing more outliers and condensing the subclusters which are close
together into larger ones.

3. Global Clustering - This phase performs the clustering of the resulting
CF-tree either from phase 1 or after the condensing from phase 2. Thereby
obtaining the different patterns and structures available in the data.

4. Optional refining - This phase is also optional but it aims at refining the
clusters which were created in phase 3 by using the cluster centres as seeds
and then redistributing the data points to the closest cluster centres, thus
obtaining a refined result and a better set of clusters. It needs to be noted
that another pass over the data is done which is generally not possible with

pure and infinite streams.

Challenges

The limitation of each node to hold only a fixed number of entries introduces 2

major challenges in BIRCH. They are:

1. Two subclusters which should be in the same cluster are split into different
nodes and similarly two subclusters which shouldn’t be together are part
of the same node. This challenge is solved by using an already existing
algorithm (global or semi-global) for clustering all the entries in the leaf
node across the different leaf nodes, thus such anomalous entries would not

effect the final clustering.



Contents 24

2. In case same data point is inserted twice, the resulting cluster for both of
them could be different as they might be put into different nodes. This
challenge is solved by using the phase 4 of the BIRCH algorithm where
clusters are refined by readjusting the data points according to the clusters.
This challenge is thus not easily solvable because the data points are not

available for a second pass in pure streaming scenarios.

Merits and Limitations

Merits

e The first algorithm which proposed to store summary information as Cluster
Features(CF), used extensively in other algorithms.

e Can handle large amount of data.

e Essentially one pass algorithm, after creating CF-tree, any global or semi-

global algorithm could be applied.

Limitations

e Cluster quality dependent on a second pass which in most cases is not avail-
able.

e Does not detect concept drift as no concept of decay of older data.

3.2.2 ClusTree

ClusTree[11] claims to be a compact and self adaptive index structure for main-
taining the summary of the data coming via stream. In this algorithm the authors
propose a parameter free algorithm which is capable of processing the stream in
a single pass and with available memory. It also dynamically adapts to the speed
of the data stream by using a concept called anytime inserts. Correspondingly,
anytime clustering approach is proposed which makes the algorithm capable of de-
livering a result at any given point in time. It uses a strategy similar to CluStream
[7] to forget older data and give more importance to new data points. Addition-
ally, the authors propose novel descent strategies to improve the clustering result

on slower streams as long as time permits.
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ClusTree procedure with anytime inserts

ClusTree creates and maintains compact summaries of incoming datastream us-
ing a popular technique known as Micro-Clusters which is already explained in
BIRCH and CluStream algorithms. Thus instead of storing all incoming objects,
it maintains a cluster feature tuple similar to BIRCH, given by CF = (n, LS, SS)

where n = number of points, LS = Linear Sum and SS = Squared sum.

The problem with traditional microclustering approach is that it lacks support
for varying stream speeds. The authors of ClusTree propose extending the index
structures available in the R-tree family to maintain CF’s. This allows maintaining
a hierarchy of microclusters at different granularity levels. Thus, if a given data
point reaches the leaf node and that the data point is similar to the microcluster

then it is absorbed by it, else a new micro-cluster is created.

The problem with such hierarchy is that there might not be enough time to insert
the object at the leaf node as the stream speed varies and time taken to process
one data point might be more than the speed at which the next data point comes.
Thus the concept of anytime inserts is used. This allows to store the incoming
data point temporarily in a local aggregate, so that necessary information for
clustering is maintained and rather than discarding, the newly arrived data point
is inserted somewhere. The advantage local aggregates provide over local queues
is that the time for regular inserts can be used to take a buffered local aggregate

to the corresponding leaf node as a hitchhiker by a descending data point.

Clustree

The definition of ClusTree is provided as is from [11] and is given as follows:
A ClusTree with fanout parameters m, M and leaf node capacity parameters 1, L

is a balanced multi-dimensional indexing structure with the following properties:

e an inner node nodes contains between m and M entries. Leaf nodes contain
between 1 and L entries. The root has at least one entry.

e an entry in an inner node of a ClusTree stores:

— a cluster feature of the objects it summarizes.
— a cluster feature of the objects in the buffer. (May be empty.)

— a pointer to its child node.



Contents 26

e an entry in a leaf of a ClusTree stores a cluster feature of the object(s) it
represents.

e a path from the root to any leaf node has always the same length (balanced).

The tree defined above is created and maintained like any multidimensional index
such as R-tree, R*-tree etc. For insertion, the subtree with the closest mean with

respect to euclideam distance is chosen.

Here, its important to mention that the buffer in each entry of the tree is really
crucial as that shows the anytime capability of ClusTree. It is used as a temporary
storage for the data points when the insertion procedure is interrupted and the
data point couldn’t reach the leaf node on time. Thus, whenever a future access to
this subtree is made, the the temporary buffer entry is taken along as hitchhiker to
the leaf node. Interestingly, whenever moving down the subtree, the destination
differs for the original data point and the hitchhiker, the hitchhiker is placed in
the buffer of the corresponding split node, such that some other data point may

carry it down.

This concept of hitchhiking and temporary buffer storage is crucial for ClusTree’s

anytime clustering capability.

Cluster updates and decay

Similar to CluStream, ClusTree uses a decay rate A which controls how much
weight the new items have over the old items. Thus higher the value of A, faster
is the process of forgetting the older data. For this, the data points are weighed

with an exponential time-dependent decay function,

w(At) = pAA

where 8 = 2 (value chosen by the authors as optimum).

As for any algorithm which incorporates decay factor, ClusTree also has to add
temporal information to the nodes of the tree. It is ensured that the inner nodes of
the tree summarizes their corresponding subtrees accurately by making elements

of a cluster feature vector dependent on the current time t, thus:
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n
Z (t —ts;)

where n = number of contributing objects ts; = timestamp at which data point
x; was added to CF

As the additive property of CF and temporal multiplicity are preserved (add ref-
erence 3). Thus, if no object is added to a CF during the time interval [t, t+ At],
then

CF(H_At) = w(At).CF(t)

Now that the decay procedure has been explained, it is useful to note that data
point x carries the timestamp t, of its arrival. Knowing this the procedure of

updating entries in the nodes are explained as follows:

1. Each entry in a node has a timestamp e,.t, which specifies the time of last

update.

2. When a data point descend to a node in the tree, all entries of e, in the
node is updated to timestamp of the arrived data point, ¢, by position wise
multiplication with the decay function.
es.CF < w(t, — es.ts).es.CF
es-buffer «+— w(t, — es.ts).es.buffer

3. The timestamp is reset to the timestamp carried by the incoming data point,

thus eg.t, < t,

It is important to specify here that all the entries in the same node gets the same
overall timestamp as all entries are updated in the node in which the data point

descends to.

The above procedure of weighing with time, helps in avoiding splits and saving

time. Thus, if a node is about to be split, the algorithm checks whether the
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least significant entry can be discarded or not. Assuming that a snapshot of the
ClusTree is taken regularly after 4,,, time, the significance is tested by checking
(t)

whether the entry é with the smallest n;’ satisfies

nt(;) < /B—A-tsnap

If this is the case, € is discarded, making room for the incoming data point to be
inserted, and avoiding a split. The summary statistics of é are subtracted from
the corresponding path up to the root. Also, its important to note that no entry
is discarded if a new object has been added to it after the last snapshot has been

taken.

Aggregation

The problem with fast streams is that insertion of data points would be interrupted
continuously with the data points being stored in the root or upper level of the
tree with little chance of getting down the tree. The worst case is of merging of
dissimilar data points in the buffer which becomes inseparable in the buffer and

thus having very bad cluster quality.

To solve this issue, the authors propose a speed-up through aggregation before
insertion. This is achieved by not inserting each data point individually. Rather
this is achieved by adding up m incoming data points and inserting the aggregate

and summing up the next m data points.

The problem here is that very dissimilar data points can go to the same aggregate
and we get the similar scenario of buffer back. To solve this, the authors keep sev-
eral aggregates for dissimilar objects and make sure that the objects summarized

in the same aggregate is similar.

To perform this segregation, a max radius for the maximum distance of the data
point in the aggregate is set. The value or max-radius is determined from the leaf
level as the average variance of the leaves. Thus, fast streams don’t deteriorate

the quality of the cluster very bad.

Also, the number of aggregates to be maintained is determined by the speed of

the stream, i.e. it cannot exceed the number of distance computations that can
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be done between two arriving items. In the case of a varying data stream, the

maximum number of aggregates has to be set by the user.

Time Utilisation with Slower Streams

The default mode of working with normal speed streams is to reach the leaf node
by always picking the child with the respective smallest distance between the data
points and the children reachable from the current node. This can be considered

as a single-try depth first approach.

When the stream speed is slower than usual, using a depth first approach would
leave the algorithm idle once the data point reaches the leaf node. Thus, the
authors explore alternative ways of choosing paths down the tree, as well as ways
on how to spend any time that might still be available after reaching leaf level due

to small model size and variation in object inter-arrival time.

Priority breadth first traversal The depth first strategy does not perform
any kind of backtracking and hence cant correct any misguided choice that might

occur due to overlapping entries on higher levels of the tree.

Thus to find the closest entry breadth first search evaluates all entries per level
by sorting the entries by the distance distance of their corresponding parent to

quickly find the closest option.

The advantage of this procedure is that as the entries are sorted according to the
distance, the likelihood of finding the closest maintained micro-cluster within the
first few entries of the priority queue on the leaf level increases. The only difference
from depth first strategy is that the entries on the final path are updated at the

time of interruption and not as the data point goes down the path.

Best first traversal As the depth first approach uses a greedy approach to
descend down the tree, and it is not able to revise its choice, thus misleading
aggregate information on the upper level could lead to bad clustering quality as it
is possible for the micro-clusters in the lower levels to have a comparatively high

distance to the data point when compared to nearby leaves.
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Thus to handle such situations, best first strategy maintains a priority queue of
the entries seen so far along with the corresponding distance to the data point to
be inserted. Given the time to make the next step in descending down the tree,
the best first strategy always takes the first element from the queue i.e. the entry
which has the smallest distance to the object.

This is followed by calculating the corresponding distances of the data point to
the child node and insertion of the entries in the priority queue. This process is

repeated until interruption or all the nodes have been visited.

The best first strategy means that the decision which node to be inserted in the
priority queue is now based on all the information that the algorithm has at the
time of the decision making. The next descent is made along the path given by
the priority queue even if it means not continuing the deepest path. Thus best
first can be considered as a global optima strategy compared to the depth first

which reaches for a local solution.

Iterative depth first descent A possible drawback of Best first and priority
breadth first is that in both the algorithms its possible for the data points to
be buffered at a higher level of the tree depending on how soon the process is
interrupted, in comparison the depth first descent makes the best case to reach

the leaf nodes but it compromises on the quality.

The iterative depth first descent tries to take the best of all worlds by initially
following the depth first descent strategy but then upon reaching the leaf level, it
iteratively evaluates the decisions taken at the nodes on the depth first path as

long as time permits.

The algorithm after reaching the leaf level goes back to the root and then descends
into the sibling of the entry chosen during the last iteration. This gives two more
alternatives along with the already available leaf node and the best is chosen
out of the three. If there is still no interruption, the process is again repeated
and continued until the algorithm is interrupted or no more unchecked siblings
remain in the path. On interruption, the usual method of buffer and update is

implemented as with the other algorithms.

Thus all these alternatives use the available time in the best possible ways and

help in improving the quality of the cluster.
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MacroCluster generation

The process of inserting the data points in the tree and storing results in the
corresponding leaf levels can be seen as the online component of the algorithm.
Thus, the microclusters stored in the leaf levels with the cluster features can be
used in the offline macroclustering phase where the means of the CF’s could be
taken as representative points and k-means clustering could be applied or a density
based clustering algorithm could be applied as well to detect clustering of arbitrary

shape.

One of the main advantages of ClusTree is that it can maintain a large nummber of
microcusters compared to other algorithms like ClusStream and hence the offline
macroclustering procedure has more finer granularity of input which is specifically

useful for density based clustering approaches.

Merits and Limitations

Merits

e Anytime clustering and self adaptive model size using buffer and hitchhiker
concepts.

e Improved clustering quality on very fast streams using aggregation.

e better usage of idle time by using alternative descent strategies.

e Microclusters can be used to create macro cluster using other popular algo-

rithms.

Limitations
e Limited applicability to density-grid based clustering algorithms as micro-

clusters might not resemble dense grids exactly, thus might have difficulty

in generating clusters of arbitrary shape.

3.2.3 ODAC

ODAC](12] is functionally different from the other algorithms reviewed in the sur-
vey. It clusters not the incoming data points but the attributes. Thus, in ODAC
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each attribute is a time series and a data point which is fed to the system is the
combination of observation from all time series at a particular time. The ODAC
system uses Pearson’s correlation coefficient [13] as a dissimilarity measure be-
tween time series over a data stream. This is followed by an agglomerative phase
which helps in detection of concept drift by capturing the dynamic changes in the

stream.

Unlike most partition based algorithms, in hierarchical clustering one doesn’t need
to know the value of k (Number of clusters) in advance. Thus hierarchical struc-
tures presents a better way to solve the problem of clustering . The are two known
strategies for hierarchical clustering, divisive and agglomerative. This paper in-
crementally uses the divisive approach to create a hierarchy of clusters using the

aforementioned dissimilarity measure.

ODAC overview

The process of clustering is simple and it consists of a top-down approach where
one starts with all the data points as a single cluster and then incrementally split
the clusters based on the diameters of the clusters. The leaf level nodes of such
tree are the final clusters produced by the algorithm. It should also be ensured
that the overall intra-cluster dissimilarity is being reduced after every split of the

clusters.

For the calculation of similarity score between time series, Pearson’s correlation

coeflicient is used which is defined as follows:

p _ 4B
corr(a,b) = N

A -2 [B, B

where,
A:Zai7 B:Zbla AQZZQ?, BZZbea P:Zaibi>

n = total number of data points

Thus, given the correlation coefficient, the dissimilarity between a and b is given

as follows,

1 — corr(a,b)

rnome(a, b) = 5
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where rnomec(a,b) = Rooted Normalized One-Minus-Correlation

ODAC implementation

The splitting of a leaf node in the hierarchy depends on the minimum number of
observations necessary to ensure convergence so that the leaf node can be tested for
splitting. This is done in ODAC using Hoeffding bounds [14] which is preferred
over using a user-defined parameter as it is independent from any probability
distributions which generates the observations. Thus the Hoeffding bound helps

in selecting the pair of variables which represents the diameter of the cluster.

Having the stated principles in place, the ODAC system feeds in new data points
and they are processed only once. Also, the dissimilarity matrix is only computed
for each leaf only when the true diameter is known with confidence given by the
Hoeffding bound, this helps in speeding up computations as for every new data

point only the leaves are updated.

Once the leaves have saturated enough with incoming data points such that it
can be tested for splitting or aggregation, then the following heuristic is used for

splitting the cluster CKk,

(d1 — do)‘dl + do — 28| > €p

where,
dy = minimum distance between variables in the cluster respectively
d; = distance between the pair of variables with maximum dissimilarity

d = average of all distances in the cluster

It may happen that the decision of splitting which created a certain leaf may
be outdated owing to the change in the structure of the underlying data stream
(concept drift). To capture this change, the aggregation of the leaf nodes may
be done. For calculating this, the Hoeffding bound could be applied, such that a
cluster C}, can be aggregated on the parent C}, along with the sibling Cj, if

2.diam(C;) — (diam(Cy) + diam(Cy)) < ¢,
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Thus if the above condition satisfies, the child nodes merge to the parents and the
total number of cluster reduces and the new leaf starts new computation due to

the underlying concept drift of the data stream.

Merits and Limitations
Merits

e Attribute clustering gets benefited from distributed systems, as different
attribute streams can be handled separately.
e Number of clusters need not be fixed beforehand

e Constant time and space complexity

Limitations

e Noise detection not defined in the paper

e Paper not very detailed

3.3 Density Grid Based

Density-Grid Based Clustering: Density based clusters are defined as areas of
higher density than the remainder of the data set. Objects in the sparse areas
- that are required to separate clusters - are usually considered to be noise and
border points whereas Grid-based clustering is independent of distribution of data
objects. In fact, it partitions the data space into a number of cells which form the
grids. Grid-based clustering has fast processing time since it is not dependent on
the number of data objects. The following algorithms attempts to do density-grid

clustering on streaming data:

3.3.1 D-Stream I

The D-Stream I[15] algorithm uses an online component similar to that used in
clustream, which maps each input data into a grid and a corresponding offline

component which computes the density of the grids and subsequently cluster the
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grids based on the density. The algorithm also employs a density decay factor to

capture the changes in the structure of the data dynamically.

The algorithm aims to solve 2 main challenges associated with clustering data

streams:

1. The algorithm aims to capture dynamically changing data, thus it should
be able to detect changes in the structure of the data over time and create
corresponding clusters.

2. As we are dealing with large amounts of streaming data, it is impossible to

retain the density information for every data point.

D-Stream Procedure

The D-Stream algorithm processes data points from data stream according to a

discrete time step model. Thus,

1. At each time step, The online component of D-Stream algorithm keeps on
reading the data from the stream and place the data into a density grid in
the multidimensional space which corresponds to the dimension of the data,

followed by updating the characteristic vector of the density grid.

2. At each gap time step, the cluster is adjusted by the offline component
dynamically. So, after first gap time step, the initial cluster is generated
after which the algorithm periodically removes the sporadic grids and new

clusters are created.

Density Grids

The density grids is the result of partitioning the space S represented by the d-

dimensional data. The space is represented as follows:
S = Sl X SQ X .. Sd

Now for each dimension, its space S; where i = 1,....d is divided into p; partitions
as follows:
S,L' - Si71 U Si’g U..... U Si,pi
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d
Thus, the data space S is partitioned in N density grids where N = [] p;
i=1

Subsequently, a data record = = (x1, Z3....x4) can be mapped to one of the density
grids as,

g9(x) = (j1, J2, -....Ja)wherex; € S; ;,

For each of the data record x, a density coefficient is assigned which decreases with

the increase in time.The density coefficient at time t is given as follows,

D(z,t) = AT = it

where T(x) is the timestamp when data point x arrives at time ¢. and A € (0, 1)

is a constant called the decay factor.

Grid Density The grid density D(g,t) is defined as the sum of all the density
coefficient of the data point that are mapped to the density grid, g. Thus, the

density of g at t is given as follows:

D(g.t)= > (D(x,1))

x€E(g,t)

The density of the grid can be updated whenever a new data point comes to the
grid, for this purpose the timestamp for the last data point needs to be recorded.

Thus, the updation procedure of density grid g can be shown as follows:

D(g,tn) = X"7"D(g,t;) + 1

where,

t, = timestamp of the new record and t; = timestamp of the last record

This above procedure allows to update a single grid out of the N grids leading to
a O(1) running time. Also, only the last 2 timestamps needs to be stored, thus

saving space as well.

Characteristic Vector It is defined a tuple (¢, t,,, D, label, status) for a given

grid g where, t, = last time when g was updated



Contents 37

t,, = last time when g was removed from grid_list as a sporadic grid(if ever)
D = Grid Density at time ¢,

label = class label for the grid

status = SPORADIC, NORMAL

Grid types As the sum of the density coefficient of all the data records which

1

are part of the system will never exceed =,

thus the average density of every

grid can be not more than m

These observations gives rise to the following definitions:

Dense Grid:

Dg.t) > —Em

S NG-a

where (), > 1 is a parameter controlling the threshold and is less than N and is
set to 3.

Sparse Grid:

Ci
D(g,t) < ———— =D
where 0 < C; < 1 and is set to 0.8
Transitional grid:
L < D( t) < i
NI— ) =YY =Na )

Neighbouring grids: Two grids gl and g2 are neighbours in the & dimension
where 1 < k < d, such that:

1 jl=42i=1,...k—1,k+1,..d; and
2. i =il =1

D-Stream Components
Grid Type conversion A grid can be degraded to from a dense to a transitional

or sparse grid or can also be upgraded from sparse to transitional or dense grid

depending on whether new data arrives in the grid or not.
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The time gap to inspect the density of each grid cannot be either too high or too
low as high gap may not detect changes in the data stream properly and low gaps
can increase the workload and the amount of computation. Thus, the minimum
time needed for the conversion of dense grids to sparse and vice versa needs to
be considered and the minimum of these 2 times should be used to set the time
gap. This is done in order to make sure that the grid checking is done frequently

enough to check the changes in the density of the grid.
Thus, the following results are obtained,

1. Minimum time needed for a dense grid to become a sparse grid,

o= o (&)

2. Minimum time needed for a sparse grid to become a dense grid,

N-Cp
5= [roo (=)

Detection and removal of Sporadic grids Sporadic grids are grids which
contains very few data points, this could have happened because of outlier or
noise, or even because the structure of the stream changed and the once dense
grid has become sporadic with time decay and non-arrival of new points in the

grid.

As the number of sporadic grids can become very large considering the case of
unlimited data streams with lots of noise and outliers and such sporadic grids can
put exceptional load on the system, thus it is important to detect and remove the

sporadic grids periodically.

The grids whose density is less than D, are the candidates for sporadic grids which
needs to be considered for removal. There are 2 conditions when the density of a

grid can be less than D, they are:

1. The grids receive very few data points
2. The grids were once dense but then the density gets reduced as no new points

arrive in the system and the decay factors reduce the density of the grid.
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The grids in the first case only are considered for removal as they are the true
sporadic grids. For this purpose, there need to be a density threshold function
which is used to differentiate between these two classes of sparse grids. Thus the

density threshold function for a given time t is given as follows,

c Cy(1 — \—ta+1)
= — >\Z =

N 2} N(1-=2\)
where,

ty = last update time of grid g and t > ¢,

Given the density threshold function, a sparse grid is adjudged as a sporadic grid
if it satisfies the the following 2 conditions. At time t,

L. D(g,t) <m(tgt)
2.t > (14 B)ty, if grid was deleted before given by time ¢,,, where 3 is a

constant.

Also, the variables t,, and ¢, are part of the characteristic vector of grid g.

After the sporadic grids are detected, they need to be deleted from the grid_list.
The grid_list is a list of grids that are considered for the clustering analysis and is
implemented as hash tables using doubly linked lists to avoid collision. The key
for lookup update and deletion in the hash table is given by the grid coordinates.
Thus, as sporadic grids are not to be considered for clustering, thus the following

rules are used to delete the sporadic grids from the grid list:

1. During inspection, all the sporadic grids found by using the previous rules

are marked as "Sporadic” but not deleted until the next inspection.

2. In the next inspection, if the grids marked as "Sporadic” have not received
any new data points, then the grid g is removed from the grid_list else the

density threshold function for g is recalculated and proceeded accordingly.

Once a grid is removed from the grid_list, its density becomes 0 as the characteristic
vector of grid g is deleted. This process of deleting sporadic grid helps maintain
a moderate number of grids in the grid space S and also saves computing time
by not allowing the sporadic grids to grow in numbers. Also, deleting sporadic
grids does not affect the final clustering result thus, it is an important part of the

D-Stream algorithm.
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Clustering Algorithms

Thus the overall process of D-Stream clustering algorithm can be briefly described

as follows:

e In the first part, save summary information of every incoming point in the
corresponding grids and update the grid densities of all the grids which are
part of grid list. Every dense grid is assigned to a distinct cluster and all
the other grids are labelled as NO_CLASS. Also, depending on the density
of the neighbouring grids, the cluster labels of one cluster can be changed to
the other having more influence.

e In the second part, the grid densities of all the grids which are part of grid_list
are updated again. Every grid is analysed whether they are a sparse, dense
or transitional grid and based on the observation whether these grids have
changed from the last inspection or not, the grids are either inserted or
deleted from the grid_list.

Merits and Limitations

Merits

Clusters of arbitrary shape can be obtained

Fast clustering by removing non-essential grids

Able to detect concept drift using decay factor

No requirement of providing the value of k (Number of clusters)

e Handles outliers effectively

Limitations

e Assumption of high number of empty gris doesn’t help in handling high
dimensional data well.
e The extent of the grid space S needs to be known beforehand, without which

splitting space S is not possible.
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3.3.2 D-Stream II

The major part of this algorithm is similar to D-Stream I[15] which is because this

is actually an improved version of D-Stream I algorithm.

In D-Stream I, the algorithm simply mapped each data record to a corresponding
grid g and computed the grid density. This kind of mapping loses positional
information of the data inside the grid. Even though diving the space S in even
smaller grids can solve this issue, but then it becomes computationally intensive
and thus it may defeat the purpose of clustering streaming data as the input
stream may become faster than the computation time for each data point in the

grid.

To solve the loss of positional information, D-Stream II[16] considers the attraction

of neighbouring grids and integrates this concept with D-Stream I.

Initial Attraction

For a density grid g, let the width at the i** dimension be 2r; and let ¢; be the
location of the middle point of the i* dimension. Now, for each data point x =
(x1,....xq) that gets mapped to g, construct a hypercube Cube(z) centered at x
whose width is 2¢;, where 0 < ¢; < r; at each of the d dimensions. Now, let V' (z, h)
be the volume of the intersection of Cube(z) and a grid h, the initial attraction

between x and h, given by attr;,;(x, h) is given as the ratio of V' (z, h) to the volume
of C'ube(x). That is,

h
attripi(x, h) = 7‘/5% )
i—1 2€;

Grid Neighbourhood

The neighbourhood of grid g, NB(g) is defined as the set of grids whose center

differs from g in at most one dimension.

This makes it easier to define the attraction of a d dimensional data point x =

(x1.....z4) which is mapped to a grid g, and g’ where ¢’ € NB(g) as
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d

att’l"im(l’, g/> = H bz(xa g/>
i=1

where b;(z,¢") denotes the attraction between x and h in the i, dimension as

described in the previous section.

Also, for a d-dimensional data point x = (z1,....z4), where x maps to a grid g, then

Z attri,(x,h) =1

heNB(g)

Thus the sum of all attraction over all the neighbouring grids comes out to be 1.

Attraction over time

The attraction between x and a grid g at time t, is thus given as follows:
attr(z, g, t) = N attri(z, g)

where A is the decay factor and is exactly the same as defined in D-Stream I.

Also, two grids can have an attraction such that g and h are two neighbouring
grids at any given time t. This is known as grid attraction from g to h and is
defined as :

attr(g,h,t) = > attr(z, h,t)

z€E(g,t)

where,// E(g,t) is the set of data records that are mapped to g at or before time
t.

Also, at this point, it needs to be pointed out clearly that the grid attraction
is asymmetric and thus attr(g, h,t) # attr(h, g,t) because attr(g, h,t) represents

how close the data in g is to h.
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Clustering algorithm

As all the other components are same for D-Stream II compared to D-Stream I,
we directly jump to the clustering algorithm which needs to take into account the

concept of attraction.

In D-Stream II, the attraction between grids are used to decide on the merging
of grids. In initial clustering, the standard density based algorithm merges neigh-
bouring grids to form clusters, although because of the addition of the concept of

attraction, two neighbouring grids merge only if they are strongly correlated.

Now, two grids are defined to be strongly correlated if their attractions in both
the directions are higher than a threshold # > 0. Thus, two grids g and h are
strongly correlated if attr(g, h,t) > 6 and attr(h, g,t) > 0.

Following the same reason for defining the dense grids, 6 can be set as

c
Q—=_—_"""
PI(1—A
where C,, > 1 and |P| = number of grid pairs and can be calculated given the

number of partitions in each dimension.

The procedure of adjust_clustering updates the density of all active grids for time t
where all the active grids are part of the grid_list similar to D-Stream I. Although
the clustering procedure slightly differs as in D-Stream II, it uses the information

of grid attraction and merges on strongly correlated grids.

Apart from considering the attraction of the nearby grids, the overall algorithms

remains the same as in the case with D-Stream 1.

Merits and Limitations

Merits

e All the merits of D-Stream I
e Better clusters as the concept of grid attraction is used to specify the clusters

better.
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Limitations

e All the Limitations of D-Stream I

3.3.3 PKS-Stream

PKS-Stream[17] has a similar initial setting as D-Stream I and II, such that the
d-dimensional space S is partitioned into small grids and where every incoming
data point x, is assigned a density coefficient and can be calculated at any time t,

as

d(z,t) = 277t

where,
A = the rate of decay also called decay factor

to = the time when the data point arrived in the system

But the similarity with D-Stream ends here as PKS-stream introduces the Pks-
tree which mirrors the partitioning of the space S and where each node of the tree

corresponds to a grid.

Motivation and Structure of Pks-Tree

The major challenge of clustering high- dimensional data using grid-based algo-
rithm is that it creates a large number of empty grid cells which in general is more
that the non-empty grids. In such scenarios, there are 2 methods of proceeding

towards clustering the data,

1. All grid cells are stored, which includes the empty ones as well. In this case,
the clustering of the data is easy to perform because the relative positional
relationships is kept. Though, easier to execute, it needs a large amount of

memory to store the empty grid cells.

2. Only the non-empty grid cells are stored, in which case the relative posi-

tional relationship is lost. Here, the need for huge amount of memory is
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not required as the empty cells are not stored but the process of clustering

becomes computationally expensive.

The problems with both the above approach, motivated the creation of the index
structure inside the Pks-Tree. It solves the problem by mixing the best of both
worlds, thus the empty cells need not be stored anymore and at the same time the
relative positional relationship is kept thus improving the efficiency and memory

cost.

Structure of Pks-Tree

The definition of the Pks-tree is provided as is given by the authors[17]:
Given the parameter H, and a Pks-tree of rank K (K > 1),(a Pks-tree) is defined

as follows,

1. The root of Pks-tree at level 1 contains the over synopsis information of

space S.

2. Except the root, every node in the Pks-tree is corresponding to a K-cover
Grid Cell and stores synopsis information of S at i level (or granularity),

which is one-to-one.
3. For any two nodes g; and g in the Pks-tree, g; is a child of gs , if

e ¢ is a proper sub-cell of g, that ¢g; C g9 ,and

e there doesn’t exist a node g3 in the Pks-tree which makes ¢; C g3 and

gz C ga.

Also, the height of the tree depends on the value of K such that, more the value
of K, lower is the height and the concept of K-cover grid cell helps in removing

the empty grid cells so that the overall cost of computation reduces.

Grid Inspection and Density Threshold Function

Similar to D-Streams, PKS-Stream also aims to detect the changes in the data
streams, to do this the continuous change in the density of various data grids

needs to be inspected. Thus, to detect changes in the grid density in a timely
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manner, PKS-Stream calculates the minimum time it takes to convert a dense

grid to a sporadic grid. Thus, the minimum time t,,;, is given as follows:

t L ogit
min = T LOgHT
b\ g

where A = decay factor and is greater than 0 p = density threshold and is also

greater than 0

PKS-Stream deals with the same problem as D-Stream to find the grids which are
really sparse and not the ones which have degenerated from dense to sparse.Therefore,
PKS-Stream also employs a Density Threshold Function to detect the true spo-

radic grids which is defined as follows

2_/\(tc_t0+tmin) _ 1
p(tc’to) = 2—)\tmin — 1

where,
t. = current time

to = time when grid was inserted into Pks-tree

The value of p(t., tg) keeps on increasing with time thus ensuring that if new data
points comes to a sparse grid then they won’t be detected as true sporadic grid

and thus not being deleted from the tree.

Clustering PKS-Stream

The construction of Pks-tree is imperative for the next step of clustering, thus the
Pks-tree building and insertion is done continuously based on the data points and
its closeness to a grid cell. Also, the Pks-tree gets adjusted every t,,;, time by
using the K-cover grid cell concept. Accordingly,the pks-tree generation algorithm

given by the authors is presented in Algorithm 1.

Also, given the optimized Pks-tree, the clustering algorithm is pretty straight-
forward and is done by clustering all the minimum cells located in the leaf-node
level and by assigning neighbouring dense grids with the same cluster label. The

clustering procedure of Pks-tree is given in Algorithm 2.
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Algorithm 1 Create PKS Tree

1: procedure PKSTREECREATION(x1, T, ..., T4)

2 Create root node of the tree, t. =0

3 for current object x! in stream X do

4 for ¢« = 0,1,2,...,Hdo

5: compute the coordinate of the cell g corresponding to z! ;

6 if g exists, then insert z! into it, goto(4);

7 else insert g to the corresponding level of Pks-tree, its
par.childcount + +, and insert z into it.

8: end for

9: te =1.+1;

10: end for

11: if t. mod per == 0 then

12: detect each leaf node of Pks-tree;
13: if gy.dense < p(t.,to) then

14: delete gp;

15: end if

16: adjust tree;

17: end if

18: end procedure

Algorithm 2 PKS Clustering

1: procedure PKSCLUSTER(Pks-tree)

2 if t. mode per == 0 then

3 for each leaf node grid gy of Pks-tree do

4: if gy is unmarked and g.dense > p then

5: mark gy with a new cluster label;

6 end if

7 for each neighbour gy’ ofgy do

8: if ¢’ 1. meets neighbour g, 2. is unmarked, 3. gy’dense > pu

then

9: mark gy’ with the cluster label of gg’;
10: end if
11: end for
12: end for
13: end if
14: if a clustering request arrives then
15: generate a cluster
16: end if

17: end procedure
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The clusters generated using the minimum cells are updated every t,,in time so

that the dynamic nature of the stream can be detected and captured in the clusters.

Merits and Limitations

Merits

e Efficient way of dealing with empty grids, improves computational complex-
ity.
e Good for performing clustering on high-dimensional datasets.

Limitations

e Depends heavily on the value of k for k-cover grid cells, this can affect clus-
tering result.

e Difficult to understand the paper with with occasional grammatical mistakes.

3.3.4 DenStream

DenStream[18] is another density based clustering algorithm which unlike the pre-
vious density based algorithms reviewed, derives some of the concepts from the

partition based clustream and improves upon it.

DenStream overview and Introductory Concepts

Denstream introduces summary representation similar to CluStream [7] which they
call core-micro-clusters (or c-micro-cluster) and is defined as a tuple of 3 elements
(w,c,r) for a group of similar points each having a timestamp, where, w is the

weight, ¢ is the center and r is the radius.

Also, its is imperative to note that a c-micro-cluster is considered dense, only if
w > pu and r < e. The radius and the weight control the number of c-micro-
clusters such that it is greater than the number of natural clusters but lesser than
number of data points, which is very similar to what CluStream does, although

the number there is user defined.
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In addition to c-micro-clusters, DenStream also introduces potential c-micro-clusters
(or p-micro-clusters) and outlier-micro-clusters (or o-micro-clusters) which are dif-

ferentiated based on the weights w > Su and w < Su, respectively.

Also, the entire clustering algorithm employs the damped window model such
that the weights contributed by older data diminishes with time and new data
gets higher weight. This is given by the following fading formula

ft)=2_x

where A > 0, is the decay factor

DenStream Clustering

The entire process of clustering the stream is divided into two parts, similar to

that of CluStream.

1. Online micro-cluster maintenance - which includes p-micro-clusters and o-

micro-clusters as well

2. Offline part of generating macro clusters - which is done based on density

unlike CluStream and thus it gives clusters of arbitrary shape.

Online Phase In the online-phase, the c-micro-clusters and p-micro-clusters are
maintained for every incoming data points form the stream and a separate buffer

called outlier-buffer is maintained for the o-micro-clusters.

Thus, for every incoming point p, p is first attempted to be merged into a p-
micro-cluster, else it is attempted to be merged in an o-micro-cluster, both of
these operations depend on the radius rp of the point. If neither of the above
is possible then a new o-micro-cluster is created and that is inserted into the

outlier-buffer.

At the same time, the weights of existing p-micro-clusters keep on decreasing if no
new data point arrives in it. Thus similar to D-Stream, a p-micro-cluster needs
to be inspected periodically in case it degenerates to an o-micro-cluster and the

minimum time needed for this conversion is given by,
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|1 By
T, = L\ZOQ(ﬂu — 1)-‘

This ensures the maximum number of p-micro-clusters in memory and is given by

w
By

In case there is a lot of noise in the data, the number of o-micro-clusters may
increase quickly and keeping them all in the outlier-buffer is expensive, thus Den-
Stream deals with this problem by removing o-micro-clusters whose weight at

current time t is lesser than the lower limit of weight which is given as follows,

2—)\(tc—t+Tp) -1
ltet) = —550 7

where t, = creation time of o-micro-cluster

The authors then prove mathematically that the total number of micro-clusters
increases logarithmically with increasing stream lengths and claim at the same
time, that the total number of microclusters in real applications is not going to be

very large. The proof is outside the scope of the survey.

Offline Phase In the offline phase, the p-micro-clusters is used to apply a variant
of DBSCAN [19] algorithm to get the final macro clusters, where each p-micro-

cluster is considered as a point in itself having a weight w.

Similar to original DBSCAN algorithm, the variant creates a macro cluster based
on the relative closeness of the p-micro-clusters although this variant includes 2

parameters € and p such that 2 p-micro-clusters are directly density-reachable if,

1. dist(cp,cq) < 2.€
2. w(c,) > p

For the 2 p-micro-clusters to be density reachable only the first condition needs
to be satisfied. At the same time, a sanity check needs to be performed for 2
p-micro-clusters which don’t intersect but satisfy the 1st condition as the actual
radius is smaller than epsilon. To detect such a case, a sanity check is performed

as follows
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dist(cy,cq) < 1p+ 1y

where 7, and 7, are radius of ¢, and ¢, respectively.

Merits and Limitations

Merits

o Well defined strategy to differentiate between outliers and potential micro-
clusters.
e Very useful for dynamic data streams in detecting concept drifts.

e DBSCAN can result in decent clusters of arbitrary shape.

Limitations

e New micro-clusters for every incoming data point, if it can’t be merged into
existing micro-clusters.
e Even with regular pruning, number of o-microclusters can increase a lot and

exceed memory constraints.

3.4 Model Based

Model Based Clustering: Model-based clustering methods attempt to optimize the
fit between the given data and some mathematical model like EM (Expectation
Maximization) algorithm. The following algorithms attempts to do model based

clustering on streaming data

3.4.1 SWEM

The authors of SWEM][20] define it as "clustering data streams in a time-based
Sliding Window with Expectation Maximization technique”. It considers the task
of clustering the data stream in a sliding window such that older data can be

eliminated in a structured way.
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SWEM Structure

SWEM’s structure focuses on a sliding-window model which is time-based.

The entire time horizon is divided into smaller time periods as T'Sy, T'S;...T'S;,

where in any given time period any number of d-dimensional data points x ={x1, 2, ...

could arrive.

Now the set of data points which arrived over the last b time periods can be
defined by a time-based sliding window SW = {T'S;_py1....T'S;—1, T'S;} where, T'S;
= latest timeslot, T'S;_;, = Expired timeslot

Now, the authors assume that the data points are generated using some dynamic
statistical process, which helps evolve the stream with time and that the resulting
k clusters follow a multivariate normal distribution. Based on the above assump-
tions, any cluster C},, where 1 < h < k has a characteristics parameter ¢, given

as

b = {Oéh,ﬂh,zh}

where,
ay, = cluster weight,
[, = vector mean,

o, = covariance matrix

Thus, SWEM aims to find the set of k parameters ®¢ = {¢1, .., ¢x }, which fits the

data that arrived in the last b time slots.

SWEM Clustering algorithm

The entire process of SWEM is divided into 3 phases, these phases are described
briefly.

Initial Phase In this phase, m distributions or micro components are created
which models the data over the b timeslots in the sliding window. The set of m
parameters of the m micro components is given as ®; = {¢;....¢,,, }. Also, for the

initial phase the initial value of the parameter are chosen at random.

.Id}
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It is also assumed that the generation of data points is independent and the average

log likelihood of n records in TSy is given as follows,

Q(®r) = |T'So| 'log HmeTSo Z:L:l o X pi(xi|¢r)

Thus SWEM uses EM method to maximize the value of Q(®.) and thus when
the algorithm finally converges, for each MC; the above set of calculated micro

components are approximated as a triple 7; as

— —_— — . f— . T
T, ={N,=1|S|,0 = inesl x, I = ZmESl z;x; }
T} helps in computing the mean and covariance of M} and at the same time the
additive property of T} ensures that when components are merged, the new 7; of

the merged component can be easily calculated.

Having calculated all the sufficient statistics, the k clusters are computed using
expectation maximization as follows:
E-step:
t (t
() ph(Nlel’M%)> h))
PenT) = @
i1 Qg X pi(ﬁlel‘ﬂi 220)

M Step:

1 m
afty ZNl X p(én|Th); pptt = —=—> " p(en|Ty) x O
n =1 Loy

m m
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2

_ 1
np
where ny, = > % Ny X p(én|T))

Incremental Phase In this phase, the converged parameters in the last phase
are utilized to get the starting list of values for the parameters in the mixture

model.

Also, this phase deals with merging and splitting of components when there is

considerable changes in the streams distribution. Thus, smaller components are
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merged, if they are close together and bigger components are split if they are large

and have highest variance sum.

Expiring Phase As time moves, the sliding window slides as well, and thus the
oldest time slot is eliminated from consideration. The list of new k parameters &4
is updated by subtracting the summarized statistics from the expiring timeslot.
SWEM helps in gradual removal of such statistics by employing a decay factor
A which reduces the weight of the expiring MC; by a factor of A'N; after each
iteration, where /NV; = Number of data points assigned to S; having high probability.

Merits and Limitations

Merits

e Strictly single scan

e EM technique used has solid mathematical application

Limitations

e The mixture model is assumed to follow Gaussian distribution

e Paper structure not very clear.

3.5 Algorithm Comparisons

In this section, we look through all the algorithms at a glance and present a simple
yet comprehensive comparison of the algorithms reviewed. This comparison is by
no means exhaustive, although for the reader its useful to understand the features
offered by every algorithm. The comparison is presented in a tabular form in table
3.1,
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Stream Clustering Algorithm Comparison

Concept Drift

Algorithm Year Algorithm Type Cluster Shape Detection
STREAM 2003 Partition-Based Spherical No
CluStream 2003 Partition-Based Spherical Yes
StreamKM++ || 2012 Partition-Based Spherical No
BIRCH 1997 | Hierarchical-Based Spherical No
ClusTree 2011 | Hierarchical-Based Depends* Yes
ODAC 2006 | Hierarchical-Based Spherical Yes
D-Stream I 2007 | Density-Grid-Based Arbitrary Yes
D-Stream IT || 2009 | Density-Grid-Based Arbitrary Yes
PKS-Stream | 2011 | Density-Grid-Based Arbitrary Yes
DenStream 2006 | Density-Grid-Based Arbitrary Yes
SWEM 2009 | Model-Based (EM) Spherical Yes

TABLE 3.1: Comparison of reviewed algorithms

*ClusTree’s macro clustering step depends on a traditional multi-pass clustering
algorithm. Thus, if an algorithm similar to K-Means is chosen for clustering then
spherical clusters are generated, else if density based clustering is applied then the

macro clusters generated would be of arbitrary shape.



Chapter 4

Algorithm Selection and

Implementation

In this section, we discuss the algorithm which was selected for implementation
from the pool of surveyed algorithms. Along with that, we will also discuss the
reasons behind selecting the algorithm for implementation and discuss the pro’s

and con’s of the same.

Later, details of the implementation of the selected algorithm is presented along

with brief introduction to the scalable data-processing engine-Apache Flink.

4.1 Algorithm selected for Implementation

After thorough understanding of all the surveyed algorithm, we decided to select
CluStream for implementation purpose from the pool of the 11 algorithms which

were surveyed in the chapter 3.

4.2 Reasons for selection

The main reason of selecting CluStream for implementation, is the novel concept
of online - offline framework which suits the streaming data scenario particularly
well. As streaming data consists of continuous, fast and potentially unlimited

data, thus a clustering algorithm over such a streaming data should be able to

56
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quickly process such data points. Also the data points are generally one pass in
nature, such that once it is processed it is gone. Thus, the online component which
creates microclusters introduced by CluStream helps process the data quickly and
keep a summary of all the incoming data points, such that macro clusters can be

later in the offline phase created as per the wish of the end user.

Another very important reason of selecting CluStream is the fact that a very large
proportion of the stream clustering algorithms mimic the concept of microclusters
and online-offline framework, even with different methodologies. Thus, an imple-
mentation of CluStream could be extended for the other similar algorithms with

minimal effort.

Obviously, there are algorithms which perform better and give better clusters. But
implementing a stream based algorithm on a large scale & parallel architecture
has its set of challenges. Therefore, the selection of CluStream seemed optimal for

current use and for future research as well.

A working implementation of CluStream over the parallel architecture would open
up new possibilities of implementation and usage of stream based algorithm on
a large scale, thus a working model of an algorithm is more important than an

algorithm which might present better results but is non-functional.

We now discuss about the implementation details with a brief introduction to the
scalable stream processing engine - Apache Flink, followed by the workflow and

challenges associated with implementing the clustering algorithm on top of Flink.

4.3 Flink Introduction

Flink[21] is a high performance scalable batch and stream processing engine which
can process really large amount of data with ease. Here, we are more concerned
about stream processing, so our discussion would be confined to the boundaries of

handling streaming data.

Flink’s core is a streaming dataflow engine that provides data distribution, commu-
nication, and fault tolerance for distributed computations over data streams. It is
a result of of the Stratosphere[22] project whose primary objective was to “enable

the extraction, analysis, and integration of heterogeneous data sets, ranging from
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strictly structured relational data to unstructured text data and semi-structured

data.”

Flink’s [23] dataflow engine is written in Java and Scala and it can execute a given
dataflow program in a distributed, data parallel and pipelined manner. Flink
programs can be written using high level languages like Java and Scala. The
Flink community is also working on building a python API which would enable

programmers to run Flink jobs using Python as well.

Flink can seamlessly connect with various data sources and even with other open
source technologies, for e.g.[21] it runs on Yarn, integrates with HDFS for data
storage, consuming data streams from Kafka like Apache Kafka, for streaming
data, consumption Flink runs on YARN, works with HDFS, streams data from

Kafka, and can even execute Hadoop program code.

4.3.1 Flink Features

Flink boasts of high throughput and low latency stream processing with exactly-

once guarantees. Some of the features offered by Flink[21] are described briefly:

e High Performance & Low Latency - Flink’s data streaming runtime

achieves high throughput rates and low latency with little configuration.

e Support for Event Time and Out-of-Order Events - Flink supports
stream processing and windowing with Event Time semantics.Event time
makes it easy to compute over streams where events arrive out of order, and

where events may arrive delayed.

e Exactly-once Semantics for Stateful Computations- Streaming appli-
cations can maintain custom state during their computation.Flink’s check-
pointing mechanism ensures exactly once semantics for the state in the pres-

ence of failures.

e Highly flexible Streaming Windows- Flink supports windows over time,
count, or sessions, as well as data-driven windows.Windows can be cus-
tomized with flexible triggering conditions, to support sophisticated stream-
ing patterns. Thus one can maintain a window of events to emulate batch
behaviour or perform calculations which are not directly possible with con-

tinuous stream processing.
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e Continuous Streaming Model with Backpressure- Data streaming ap-
plications are executed with continuous (long lived) operators.Flink’s stream-
ing runtime has natural flow control: Slow data sinks backpressure faster

sources and it can handle such scenarios well.

¢ One Runtime for Streaming and Batch Processing- Flink uses one
common runtime for data streaming applications and batch processing ap-
plications.Batch processing applications run efficiently as special cases of
stream processing applications. This benefits Flink greatly as it doesn’t
have to compromise on stream processing and at the same time emulate

batch behaviour as well.

4.4 Implementation Details

In this section, we would describe the workflow of our implementation. This
would include details about reading the data, preprocessing it if necessary, creating
microclusters and then correspondingly creating the macro clusters. But before
going into the details, we looked into the non-parallel, non-scalable version of

CluStream from [24] which gave insights as to how CluStream worked.

The process starts by reading the datapoints either from a datastream source or
creating a wrapper around a datafile such that data points are streamed from the
file. This process parses the data and if required, pre-processes it by removing

redundant attributes or marking labels if available, as well.

Once the datastream generator starts generating data points, it is fed to the Flink
iteration which according to the Flink iterate javadocs[25], "initiates an iterative
part of the program that feeds back data streams”. The data stream which is fed
back is the updated set of microclusters which are created after the datapoints
have been consumed in the iteration process. This process is the trickiest part
of the entire workflow and it includes a lot of challenges which are described in
the sections [4.5, 4.6]. Once the microclusters are created, it is fed back for the
next iteration and at the same time a copy of the microclusters are forwarded for

storage, such that macro clusters can be created from them.

For creation of the macrocluster, we used an implementation of KMeans—++ seed-

ing procedure similar to [26], thus the initial centroids are found using this method.
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Once we have the centroids, we just treat the microclusters as data points and cre-
ate macroclusters based on naive implementation of Kmeans using the centroids

already found.

Once we have the macro cluster several performance metric like SSE and purity
of clusters are calculated. In our implementation, we keep the data points tem-
porarily even after their consumption in the microcluster updation process. This
is done so as to analyse the purity of the cluster as these data points are tested

against the calculated labels and original labels.

ConnectedIterativeStreams <Point, MicroCluster []> inputsAndMicroCluster =
tuples.iterate (1000)
.withFeedbackType (MicroCluster [].class);

DataStream<Tuple2<MicroCluster[],
List<PointLabel >>>
updatedMicroClusterWithPoints =
inputsAndMicroCluster
.flatMap (new MyCoFlatmap(num_of_mc,tw, startTime))
.assignTimestampsAndWatermarks (new
BoundedOut0fOrdernessGenerator ())
.keyBy (new KeySelector<Tuple7<MicroCluster[],
Integer ,Long,Point ,Integer ,Long,Long>,
Long>() {

@Override

public Long getKey(Tuple7<MicroCluster[],
Integer, Long, Point, Integer,
Long, Long> value)
throws Exception {

return value.f6;

»

.countWindow (totalParallelism)

.fold(new Tuple4<MicroCluster[], Integer,
List<PointLabel>, Boolean>
(initialMC, -1, initialPointLabel, true),
new FoldMC())

.flatMap (new ReturnMC());

DataStream<MicroCluster []> updatedMicroCluster =
updatedMicroClusterWithPoints.
flatMap (new GetMC());

inputsAndMicroCluster.closeWith(updatedMicroCluster.broadcast ());

CODE 4.1: Iteration code snippet

The code snippet presented in 4.1, presents the main iterative logic of our imple-

mentation, the iteration starts from the tuple.iterate(10000) call where tuple is our
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data source stream and 10000 is the maxWaitTime parameter to set a max waiting
time for the iteration head. If no data is received in the set time, the stream ter-
minates. After calling our flatMap function, the flatmap receives data from both
the data stream source and the iterative feedback sources, if data is available. We
then process the data points and create corresponding microclusters which are

then sent back to the stream element updatedMicroClusterWithPoints.

The updatedMicroClusterWithPoints in our code helps us in initiating the it-
erative feedback part of the program. The iterative part needs to be closed
by calling the connectedlterativeStream.closeWith(DataStream) which is done
in the last line of the code snippet. This data stream which is given to the
IterativeStream.closeWith(DataStream) method is the data stream that will
be fed back and used as the input for the iteration head. The user can also use
different feedback type than the input of the iteration and then specify the feed-
back type in the Typeln formation field of IterativeStream.withFeedbackType
(T'ypelnformation). A common usage pattern for streaming iterations is to use
output splitting to send a part of the closing data stream to the head and forward-

ing the other part based on some filter specified.

A visual representation of the workflow from the Flink Dashboard is shown in 4.1:

nof set)

null, null, null, null, nul " Sink-
ce- null, nul, null, null, nul | terationSink-4
\ null, null, aull, null, aull
null, null, aull, aull, Al
null, null. null. null. null
(not set null, null. null. null, null,
o null, null, null, Aull, null,
Co-FlatMap — il null, null, nul, nul
null, null, null, null, null,
null, null, null, Aull, null,
null, null, aull, null, aull
- null, null, aull, aull, Al
null, null. null. null. null Map -= Flat Map -> Sink:
— rul il pll, rul ol S pnamed

null, null, null, null, null,

FIGURE 4.1: Original Workflow from Flink Dashboard

Once the microclusters are obtained from the map operation, the microclusters
are then fed to the macro clustering procedure which creates the given number of

macro clusters.
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4.5 Flink Challenges and Limitations

During the course of our implementation of CluStream we had to go through a
lot of challenges, this is primarily because of the reason that, even though Flink
is great for handling and processing of large amounts of streaming data but at
the same time it is not completely mature in terms of solving machine learning

problems and there still exists a lot of limitations.

Also, all the surveyed algorithms claim that they work on large scale and dis-
tributed platform and conceptually they might be correct but none of the algo-
rithms were tested on such environment. All the algorithms which we surveyed
during the course of this project were implemented and tested on single machines
with limited storage and memory. The distributed environment brings in addi-
tional features like more computing power and more memory but at the same time
it introduces more challenges. Such challenges include proper distribution of the
datasets to different partitions, processing of the data in each of the individual
partitions and then devising a way to combine all the data together to obtain

correct results.

In addition to the above, there were some functionalities which were available
for the static data via the DataSet API[27] but the same wasn’t available in the
DataStream API[28] for the unbounded stream of data, for e.g. unavailability of
broadcast sets to broadcast the list of centroids. This and other limitations are
described in details in the following section which discusses the Implementation

challenges.

4.6 Implementation Challenges

As we already discussed the challenges imposed by the underlying architecture
and also the fact that the algorithms were not tested on distributed environments,
now is the time to discuss the challenges we went through while implementing
our selected algorithm - CluStream. Thus, we list down the number of challenges

faced and what was done to tackle them in this section:

1. Unavailability of Broadcast variables This is one of those features which

is available in the DataSet API but missing in the DataStream API, and its very
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crucial as Broadcast variables allows one to make a data set available to all parallel
instances of an operation, in addition to the regular input of the operation. This
is useful for auxiliary data sets, or data-dependent parameterization. The data set

will then be accessible at the operator as a Collection.

Thus, one can easily broadcast the list of centroids or like in our case,set of micro-
clusters to all the partitions for every iteration. Also, this allows one to integrate
the list of microclusters for initial n data points which are already calculated be-

forehand as this is one of the requirements of the CluStream algorithm.

These things could only be done with the DataSet API, this is because this fea-
ture is still under development for the DataStream API and is not available for
use. Therefore, our algorithm had to improvise and take into account the unavail-

ability of broadcast variables for use in the Streaming context.

To solve this issue of unavailability of broadcast variables, we tried different al-
ternatives and tested out different configurations with our implementation. Also
at this time, it is important to note that, there is broadcast available for the
Streaming Context, but its not similar to the broadcast variables in the Dataset
APT and this function just broadcasts the elements to all the partition. The usage
of this broadcast functionality is non-trivial and is bounded with a datastream
variable. Although, as broadcasting of the set of microclusters is an integral part
of our clustering algorithm, we had to make use of what was available to us.So,

for broadcasting the microclusters following approaches were tries:

1. We read n data points and created initial list of microclusters, but as it was
not possible to send this microcluster directly into all the partitions and
access it ( which is evident from code snippet 4.1), thus we tried storing/dis-
carding the list of data points until the list of microclusters is broadcasted
back via the iterator to the datastream variable which is connected to the

main data stream.

This alternative meant that either we keep on storing the incoming data
points which risked overflow of the operator or we discard data which meant
that a lot of data points are ignored. Thus this alternative may seem to

work but its not the best one to follow in practice.

2. We don’t calculate the initial list of microclusters in the beginning and we

calculate them on the fly. This meant deviating from the exact CluStream
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model a bit but in a parallel distributed environment which already has so

many restrictions, such deviation, if beneficial, can be done.

Thus, we get the data points in each of the partitions and then calculate diffierent
initial microclusters. This behaviours is problematic as the initial microclusters
are different thus we can’t reduce the microclusters based on the microcluster
id as it would give very skewed result. But on the longer run we assumed that
the clusters would stabilise as more data points come in. Although during our
experimentations we found out that rather than fixing of the clusters , the clusters
got more skewed and the centers moved away from the actual cluster centres for

atleast one of the clusters.

2. Reducing the microclusters from partitions As seen already, the reduc-
ing procedure of microclusters is a problem if we choose to not have the initial set
of microclusters which has its own drawbacks. But along with the accuracy issues,
there is an additional problem of accumulating the broadcasted microclusters.

This is explained as follows:

When a microcluster is broadcasted, its copies are sent to each of the indidvidual
partitions. In each of this individual partitions the data points are consumed as
they arrive and according to the CluStream algorithm the summary information of
each of the data points is added onto the microcluster which it closely resembles
to, upto this part the procedure is fine and each of the partitions perform the
assigned task properly. But after this, the microclusters need to be aggregated
via the reduce procedure, now the problem here is that as each of the paritions
had an initial set of microclusters. Thus, in the reduce procedure, we get n copies
of the initial microcluster in addition to the consumed data points from each of
the partition. Dealing with this issue was very essential to not get outrageous

microclusters.

4.7 Design details

We designed the implementation in such a way so as to deal with the challenges
presented in sections 4.6 & 4.5. Our design helps solve both of the problems

described in section 4.6 at the same time.
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What we decided to do is to generate the initial set of microclusters on the fly
in the individual partitions. To solve the problem of skewed microclusters, we
dont merge microclusters from different partitions based on the microcluster id.
Rather, in the reduce phase we merge 2 set of microclusters based on the distance
of one microcluster from one reduce set to all the microcluster on the other reduce
set. The merging process is very similar to assigning data points to corresponding
clusters using K-Means. This procedure fixes the problem of skewed microclusters

and thus we have proper microclusters after every iterations.

Now to solve the problem of n copies of the initial microcluster, we decided to
simplify the microclusters to their cluster centres by dividing the aggregated data
points with the total number of points and then merging incoming data points
to the normalized microclusters. This is not optimum as the density information
of each microcluster is lost but given the scenario, this is the best possibility we

could come up to after brain storming.

These steps solved our implementation challenges. Although we had to introduce
some design changes to the original clustream algorithm, but it was necessary as
it helped achieve better and accurate cluster centers which is the main objective

of any clustering algorithm.

4.8 Original Work

CluStream performs clustering over the data and thus we only have the updated
cluster centres so as to understand where the cluster is evolving with time. This
behaviour is optimum for clustering algorithms, but as we know that the clusters
produced by such algorithms can be used for classification purpose, so we decided
to extend the classic CluStream model to perform classification as well. To do
this, we need the original data points to classify but after creation of microclusters,

CluStream consumes them and they are not used anymore.

Thus, we extended our model to perform classification of incoming data points
based on the current set of macroclusters which were created from microclusters.
We do this by not discarding the incoming data points after being consumed in the
microcluster but keeping it for some more time and accumulating a list of points
from the different partitions and then classifying the clusters associated with the

data points.
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This increases the running time a bit, but as the list of points are only clustered
and labelled for the current time t, thus the overall time doesn’t increase by a

huge factor.

Even though this part of the implementation is useful, still this concept of identi-

fying the clusters from the incoming points introduces 2 different problems,

1. We don’t have the points for recalculation after the cluster moves. This is
not a problem as we define the problem of clustering based on the current

incoming points and these points don’t play a a major role in the future.

2. We get the labels for the incoming points thus, the points which are helping
create the macro clusters are being labelled by the microclusters. This in
a way is not correct in terms of classification but in clustering a data point
can be marked to the label of the cluster it has been assigned to. Thus, this

can be done in our case to represent points in their home clusters.

Finally, after mentioned changes/improvements, we have our own version of CluS-

tream.



Chapter 5

Evaluation

This chapter refers to all the experimentations performed over different platforms.
We have a lot of parameters to test our implemented algorithm. Therefore, we
found the best set of parameters using entire grid search. This however, didn’t
perform well as older jobs started taking more time than usual which in turn

produced skewed output.

Due to the aforementioned reasons, we tested on specific sets of parameters to

show how well our implementation of CluStream works.

5.1 Evaluation Metrics

For evaluation of our algorithm, we choose the following 3 metrics:

1. Latency - Latency for our algorithm is calculated by taking the total time
to process n data points and then dividing it by n to get the average time
for processing a single data point completely.

2. Purity/Accuracy of the Clusters - As we generate the data ourselves, thus
we check the accuracy by comparing the cluster assigned by our algorithm
against the original label for each data point. Thus, the final accuracy is

given by

Correctlyldenti fied PointsinaCluster
Total PointsintheCluster

Accuracy =

67
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3. SSE (Sum of Squared Errors) - SSE gives us the compactness of the clus-
ter created by the algorithm compared to the original clusters. Thus, we
compare the original SSE against the calculated SSE and define our cluster

compactness, which again means that the clusters are well defined.

5.2 Comparison

For comparison purpose, we decided to compare our implementation against Apache
Samoa, Apache Spark and MOA. Although we could only perform our comparison
against MOA. This is because of the following setbacks:

e We tried running Apache Samoa on top of Apache Flink using the connector
available, but we couldn’t make it work. For this, we reached out to the
developer group for Samoa and we got a response that the support for Apache
Samoa is low and for the connector on Flink its even lower and full of bugs.

Thus, we dropped Apache Samoa.

e We were not of the opinion to compare our implementation against Apache
Spark’s own implementation of stream clustering algorithm - ”Streaming
Kmeans”. This was because, the spark implementation of Streaming Kmeans
relied on 2 different data stream, one for training and one for testing. Nor-
mally in streaming data, we have only one source, and even if we have mul-
tiple data sources, we still don’t have a train and a test stream. Also, the
algorithm was not capable of adapting the model based on the test stream,
thus defeating the purpose of data stream clustering. We still tried running
the spark implementation, but even after multiple correspondence from the
Spark community, our problem was not solved. Thus we decided to leave

Spark out as well from comparison.

MOA Framework

MOA[29] is an open source data stream mining framework which works in a non-
distributed environment.It includes a good collection of various machine learning
algorithms which not only includes common methods like classification, regression,

clustering but also uncommon but useful methods like outlier detection, concept
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drift detection and recommender systems. It also features tools for evaluating the
output of the machine learning task. It is written in Java and has close association
to Weka[30] which is a popular collection of machine learning algorithms for data

mining tasks.

MOA provides both, a graphical user interface(GUI) and a command line inter-
face(CUI). Although we directly use the java code as it was more accurate with

our comparison.

One of the reason, we wanted to compare our scalable implementation to the non-
scalable version is because we wanted to show that the performance our system is

better or comparable in a scalable environment.

MOA works on .arff data format which is inherited from Weka. Thus, all the data

sets we generated had to be converted to .arff format before working on them.

5.3 Experiments and Results

For experimentation purpose, we generated 2 sets of dataset, one for testing on
the cluster and one for testing on the local machine. The data is generated using
multivariate dataset generator, which was created in Java. For the purpose of
proper experimentation on the cluster, we generated dataset of sizes [100MB,
512MB, 1024MB], also for each of the dataset size we generate data with different
numbers of clusters [3,5,10] and dimensions [10,50,100]. And to test them on
local machine, we generated dataset of sizes [10,50,100], with other parameters

remaining the same.

In addition to these parameters, we tested our implementation on the cluster for
different parallelism [32,64,128] and for different number of microclusters(which
according to CluStream[7] should ideally be 10 times the number of clusters), and

so chose the following range of values for number of micorclusters [30,50,100].

All the data we generated had 10% noise within it, so as to make the data closer

to real datasets and also to make the clustering process more challenging.
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Tests on the Cluster

We would first present the result of our implementation on the cluster. The cluster
available to us have one master node and 8 task managers/slave nodes making a
total of 9 nodes, each having 48 cores and 62.1 GB of physical memory out of which
Flink manages around 20.4 GB for operations. We used Apache Flink version 1.0.0

for testing our implementation.

For all the results published, we tested 3 times for the same set of parameters
and took an average of the same. This was done so as to take into account any

irregular behaviour within the system.
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Figures 5.1, 5.2, 5.3, as mentioned refers to the comparison of different amount
of parallelism against the metrics defined in section 5.1 keeping other variables
constant. As can be seen from the charts, with increase in parallelism, the latency
of our implementation decreases which is a good sign as the aim of scalable design
was to reduce latency. But at the same time the purity of the clusters go down
for increasing parallelism, given the fact that more number of microclusters needs

to be maintained across more partitions and the macro clustering phase has more



Contents 71

Dimensions vs AvgPurity Dimensions vs Latency
88.42 0.52
- 86.42 .
= g 0.37
= £
£ = 023
g K=5 B K=5
3 Fsize = 100 & Fsize = 100
< 78 MC=50 = MC=50
P=128 P=128
0 20 40 60 20 100 120 0 20 40 60 80 100 120
Num of Dimensions Num of Dimensions
FicUrRE 5.4: Avg-Purity for FIGURE 5.5: Latency for Dif-
Different Dimensions ferent Dimensions

Dimensions vs AvgSSE

6.02E+07

3.93E+07
2.53E+07
K=5

Fsize =100
MC=50
P=128

0 20 40 60 80 100 120
Num of Dimensions

AvgSSE

FIGURE 5.6: Avg-SSE for Dif-
ferent Dimensions

number of points to choose for centroid selection. Also, the AvgSSE increases

given the fact that the cluster purity goes down.

Next, in figures 5.4, 5.5, 5.6 we compare the metrics against the dimensionality
of the data. As expected, the latency and avgSSE increases with increase in the
number of dimensions as more calculation is needed to be done for distance and
more attributes contribute to the SSE of each cluster respectively. The purity
increases and then slightly decreases a bit, as dense cluster across dimension can

be both easy and difficult to create.

In the next set of figures 5.7, 5.8, 5.9, we keep all the other parameters fixed as
shown in the chart except the number of microclusters. This result is specifically
interesting for observation as usually the number of clusters is chosen by user. As
we can see from the charts, the avgPurity increases as we increase the number of
clusters from 30 to 100 but at the same time the latency goes up as well. Thus ,
an optimum value for the number of microclusters needs to be selected such that
the latency is not high and the cluster purity is obtained as desired. Also, avgSSE

decreases in this case given the increase in cluster Purity.
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Now we see the behaviour of the metrics in terms of number of clusters as seen from
figures 5.10, 5.11, 5.12. This is the worst performing aspect of our implementation,
as the latency increases as we need to do more calculations and the cluster purity
is affected heavily. The reason for this could be the limited number of points to
select the cluster centroids. Thus, if the number of microclusters are increased
according to the number of clusters, we won’t see such drastic reduction in the

cluster purity.
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The last set of test done on the cluster is for different values of file sizes ranging
from 100 MB data source to 1 GB, which are shown in figures 5.13, 5.14, 5.15.
Even with multiple tests, the latency across the different file sizes increases a bit
then goes down for files of higher sizes. The behaviour is same across the purity
but as we can see, the purity is not heavily affected. This shows that we can have

higher amount of data without adversely affecting the system.

Now, we take a look as how much the AvgSSE is affected after clustering, as
mentioned in section 5.1, SSE gives us the compactness of the cluster. So, when
the cluster purity goes down or the number of dimensions increase, the SSE should
also increase. In our case we compare the SSE present in the original data against

the SSE which we obtained from our system and try to find trends in it.
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Figures 5.16, 5.17, 5.18 gives the trend of the AvgSSE of our system against that of
the original data for different filesizes, number of clusters and number of dimensions
respectively. As expected, the AvgSSE increases in each of the cases, but the

compactness increases by a bigger factor than compared to the data.
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In our current scenario, the AvgSSE of our system is generally between 5 to 25
times the value of AvgSSE from the original data. This needs to be taken care of

and the only way of reducing the AvgSSE is by improving the clustering process
further, to create better clusters with higher purity.

Tests on local machine

We also tested our implementation on local machine with 2 cores(4 logical proces-

sors) having 8 GB physical memory. We ran our implementation on top of Apache

Flink 1.0.0 which is the same version on the cluster.

The results obtained on the local machine follow more or less the same trend as

on the cluster and thus are not individually presented here.
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Comparison

In this section, we present the results of comparison of our system on cluster
and on local machine against MOA [5.2]. MOA doesn’t give us the output of
the clustering process, thus we can’t compare the avgSSE of the system with the

results obtained from our system.

It’s important to note at this point that MOA is a highly optimized product
with lots of user and the result it provides can be better and faster due to this
optimization. Also, in MOA, the number of microclusters is fixed at 100, so we
didn’t change it and let it be the default setting. Also,we couldn’t get the purity of
the cluster from the Java code, but when we ran the implementation on the given

the highly optimized nature of MOA, the purity of the of the clusters obtained

We first compare as to how the number of dimensions affect latency and purity on
Flink cluster, Flink local and MOA. The figures 5.19, 5.20 illustrates the results.
From the chart, it is clear that even though our implementation of CluStream on
local machine doesn’t perform well, it fared better than MOA for higher dimensions
in terms of latency. This result is important as data streams could consist of data
having high number of attributes and even though CluStream is not the best when

it comes to handling high dimensional data, still it performs well.
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Next we compare the performance of our implementation against MOA for differ-
ent number of clusters. As can be seen from figure 5.21, the CluStream implemen-

tation ran on the cluster performs well along with MOA.

At the end, we compare the latency result for different file sizes. The graph for
this is a bit different as we tested our implementation on the cluster for higher
file sizes, [100 MB, 512MB, 1024 MB|, whereas on the local machine we restricted
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ourselves till 100 MB as the execution on the local machine for higher file sizes

was not suitable.

As can be seen from figure 5.23, we can see that even with higher file sizes(which
results in more data in the data stream), the latency keeps constant on the cluster

whereas MOA gets a bit high on the latency.
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The purity values for MOA in each of the comparison cases outperforms our im-
plementation of CluStream, both on local as well as the cluster. In certain case
like in figure 5.22, the purity goes down to 60%. This is a reason for concern and

needs to be taken care of in the future.

Result Conclusion

To conclude, we have successfully shown that CluStream can be scalable and

performs moderately well in the given test scenarios. There’s obviously scope for
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improvement, but the initial proof of concept is ready and data stream algorithms

which follow concepts similar to CluStream can be scaled in a similar way.



Chapter 6

Conclusion

The thesis comprehensibly surveyed some of the existing state-of-the-art algo-
rithms for clustering data streams and presents a comparative study of the same,
so that the user can read and identify which algorithm can fit their problem and
use the corresponding algorithm accordingly. All the algorithms surveyed claimed
that they are scalable but the experimentations were done on a single machine
with no parallelism which made this thesis more challenging as implementation of
any of the surveyed algorithm required understanding not only of the algorithm

but also of the underlying architecture of the parallel processing engine.

For parallel processing, we chose Flink which is a stream processing engine having
APT’s in Java and Scala with python API in beta. Flink introduced additional
challenges as some of the features needed to directly implement the algorithm
chosen for implementation(CluStream) were not available and we had to employ

workarounds to get the desired results.

We achieved the goal to survey data stream clustering algorithms and successfully
implemented CluStream in a distributed and scalable environment. We worked
around the challenges of implementing a stream clustering algorithm and chal-
lenges presented by the stream processing engine (Apache Flink) itself. The re-
sults obtained from the experiments were encouraging as we obtained clusters of
good quality and with low latency across various set of parameters. There is ob-
viously scope for improvement and optimizations can be performed on the system

to improve the results of clustering without compromising on the latency.

78
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This thesis is thus, a proof of concept for implementation of stream mining algo-
rithm in a scalable and distributed environment, which is still not popular in the

main stream despite having many useful use cases.

6.1 Discussion and Future Works

Future Works include improving the performance of the implemented algorithm
by finding and performing optimizations to the current framework. This would
include finding a better way to create macro clusters by selecting right set of
microclusters as centroids, so that the cluster purity can be increased. It would
also be really interesting to extend the online-offline framework of CluStream to
other algorithms (like D-Stream etc.) which uses similar basic concepts with a
few modifications. At the same time, improvement to the concept drift capture
framework is needed, so that it can catch the gradual concept drifts as well, and

not discard such data points as outliers.

It would be also interesting to notice the improvement in the performance with
optimizations in the Flink’s stream processing engine along with the availability
of the missing features, such that our implementation would work without any

workarounds.

Also, in the future we would like to perform a cumulative comparison against
other scalable stream processing engines, which was unfortunately missing from

this work.
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