
Technische Universität Berlin
Information Technologies for Business Intelligence

Master Thesis

Concept Drift Adaptation in
Large-scale Distributed Data Stream

Processing

Anastasiia Basha

Matriculation #: 0376691

Supervisor: Prof. Dr. Volker Markl
Advisors: Marcela Charfuelan, Nikolaas Steenbergen

31/07/2016

Erklärung (Declaration of Academic Honesty)

Hiermit erkläre ich, dass ich die vorliegende Arbeit selbstständig und eigenhändig sowie
ohne unerlaubte fremde Hilfe und ausschließlich unter Verwendung der aufgeführten Quellen
und Hilfsmittel angefertigt habe.

I hereby declare to have written this thesis on my own and without forbidden help of others,
using only the listed resources.

Datum Anastasiia Basha

Contents

Contents

List of Figures vi

List of Listings vii

List of Algorithms vii

Acronyms viii

1. English Abstract 1

2. Deutscher Abstract 2

3. Introduction 3
3.1. Motivation . 4
3.2. Contributions . 4
3.3. Thesis Outline . 5

4. Background 6
4.1. Online Learning . 6
4.2. Concept Drift . 7

4.2.1. Definition . 7
4.2.2. Types of Concept Drift . 8
4.2.3. Learning in Presence of Concept Drift 9
4.2.4. Typical Applications . 9

5. Concept Drift Handling Methods 11
5.1. Taxonomy of methods . 11

5.1.1. Type of Indicator . 11
5.1.2. Model Dependency . 12
5.1.3. Processing Mode . 12
5.1.4. Adaptation Mode . 12
5.1.5. Model Management . 13

5.2. Single Model Methods . 14
5.2.1. Classifier-free methods . 14
5.2.2. Classifier-specific methods . 20

5.3. Ensemble Methods . 25
5.4. Further Problems with Concept Drift Handling 33

5.4.1. Class Imbalance Problem . 34

6. Machine Learning in Apache Flink Streaming 36
6.1. Stream Transformations and Partitioning 36
6.2. State in Apache Flink . 37
6.3. Machine Learning Pipelines: Building Blocks 37

6.3.1. Generic Learning Model . 37
6.3.2. Base Classifier . 38
6.3.3. Change Detector . 38
6.3.4. Performance Tracker . 38

7. Implementation Details 39
7.1. Baseline Algorithm . 39

Anastasiia Basha: Concept Drift Adaptation in Large-scale Distributed Data Stream Processing
iii

Contents

7.2. Bagging Algorithm . 41

8. Evaluation 45
8.1. Evaluating Accuracy of Streaming Algorithms 45
8.2. K-fold Bagging Validation . 47

8.2.1. Implementation in Apache Flink Streaming 47
8.3. Evaluation on Artificial Datasets . 48

8.3.1. Baseline: Comparison of Reactive and Simple Reset Version 48
8.3.2. Bagging Algorithm: Number of Learners 50
8.3.3. Bagging Algorithm: Poisson λ Parameter 51
8.3.4. Bagging Algorithm: Parameter θ in the Reactive Algorithm 52
8.3.5. Change Detector Sensitivity . 53
8.3.6. Comparison of Baseline and Bagging Algorithms 54

8.4. Evaluation on Real Datasets . 57
8.4.1. Electricity Dataset . 58
8.4.2. Airline Dataset . 59

8.5. Latency and Throughput Evaluation . 59
8.6. Comparison with Algorithms in Apache SAMOA 64

9. Conclusion and Future Work 68

References i

iv
Anastasiia Basha: Concept Drift Adaptation in Large-scale Distributed Data Stream Processing

Contents

Appendix vii

A. Bagging Algorithm Implementation Details A.1
A.1. Data Distributor . A.1
A.2. Learner . A.1
A.3. Majority Voting Window Function . A.2

Anastasiia Basha: Concept Drift Adaptation in Large-scale Distributed Data Stream Processing
v

List of Figures

List of Figures

1. Types of Concept Drift [28] . 8
2. Processing Mode . 12
3. Adaptation Mode . 13
4. Model management . 14
5. Diversity influence in presence of abrupt and gradual concept drift [41] . . 31
6. Generic Learning Model . 38
7. Baseline Algorithm: each learner is trained on the same data 39
8. Bagging Algorithm: each learner is trained on different subset of data . . . 42
9. Bagging Algorithm Implementation Options 43
10. Comparison of Performance Estimation Strategies 46
11. Baseline Algorithm with simple reset base learner vs. with reactive base

learner . 49
12. Bagging. Different number of learners . 50
13. Poisson Probability Mass Function . 51
14. Bagging. Different values of λ parameter 52
15. Bagging. Different values of θ parameter in reactive algorithm 52
16. Bagging. Different values of sensitivity parameter δ in change detector . . 53
17. Baseline. Different values of sensitivity parameter δ in change detector . . 54
18. Comparison. Bagging sensitivity = 0.05. Baseline sensitivity = 0.02 55
19. Comparison on Agrawal Dataset . 56
20. Comparison on STAGGER Dataset . 56
21. Comparison on Hyperplane Dataset . 57
22. Performance on Electricity Dataset . 58
23. Performance on Airline Dataset . 59
24. Latency. Baseline algorithm . 61
25. Latency. Bagging algorithm . 62
26. Throughput. Baseline algorithm . 62
27. Throughput. Bagging algorithm . 63
28. Total throughput. Bagging algorithm . 63
29. Comparison with VHT and Adaptive Bagging algorithms. SEA concepts

data generator . 64
30. Comparison with VHT and Adaptive Bagging Algorithms. Hyperplane

data generator . 65
31. Comparison with VHT and Adaptive Bagging Algorithms. Electricity

Dataset . 66
32. Comparison with VHT and Adaptive Bagging Algorithms. Airline Dataset 66

vi
Anastasiia Basha: Concept Drift Adaptation in Large-scale Distributed Data Stream Processing

List of Listings

List of Listings

1. Bagging: Data Distributor . A.1
2. Bagging: Learner . A.1
3. Bagging: Majority Voting Window Function A.2

List of Algorithms

1. Adaptive Windowing . 16
2. Exponentially Weighted Moving Average for Concept Drift Detection . . . 18
3. Paired Learners . 20
4. SyncStream . 23
5. SVM-based Concept Drift Detection Method 25
6. Dynamic Weighted Majority . 28
7. Diversity for Dealing with Drifts . 32
8. Reactive Algorithm . 40

Anastasiia Basha: Concept Drift Adaptation in Large-scale Distributed Data Stream Processing
vii

List of Algorithms

List of Acronyms

ADWIN Adaptive Windowing . 15
ASHT Adaptive-Size Hoeffding Tree. .29
AWE Accuracy Weighted Ensemble . 27
CVFDT Concept-adapting Very Fast Decision Tree . 21
DDD Diversity for Dealing with Drifts . 32
DDM Drift Detection Method . 16
DDM-OCI Drift Detection Method for Online Class Imbalance . 34
DWM Dynamic Weighted Majority . 28
ECCD Exponentially Weighted Moving Average for Concept Drift Detection 17
EDDM Early Drift Detection Method . 17
EWMA Exponentially Weighted Moving Average . 17
HOT Hoeffding Option Tree . 22
HWT Hoeffding Window Tree . 22
LFR Linear Four Rates. .34
ML Machine Learning
SEA Streaming Ensemble Algorithm . 25
SPC Statistical Process Control . 16
SVM Support Vector Machine . 24
PCA Principal Component Analysis . 22
VFDT Very Fast Decision Tree . 20
VHT Vertical Hoeffding Tree . 64

viii
Anastasiia Basha: Concept Drift Adaptation in Large-scale Distributed Data Stream Processing

1. English Abstract

Many modern applications need to process vast amounts of data over short or long periods
of time. Traditional machine learning techniques, where model is created and trained once
and later used for new samples, are not applicable in this setting anymore. Consequently,
the new concept arised – Online Learning. The model is continuously updated with
training samples as they arrive. An important aspect of online learning is that it takes
the time dimension of data into account. And the data characteristics might change over
time. This phenomena is called Concept Drift [29]. The ability to adapt to such a change
is a very important requirement for an online learning algorithm.

The need for processing continuous, potentially infinite sequences of data sparked the
development of multiple distributed stream processing frameworks. This thesis explores
the opportunity to use one of such systems, Apache Flink, for implementation of scalable
adaptive online learning algorithms. In particular, this thesis concentrates on the scalable
implementation of the bagging ensemble algorithm. As the algorithm has no implicit
ability to handle concept drift we explore different options of integrating the concept drift
detection into it. We also analyse different techniques to make the algorithm resistant to
false drift detections.

This thesis also explores different evaluation techniques for the online learning algorithms,
as the traditional methods used in offline learning, like cross validation, are not applicable
in the case of infinite data streams.

Anastasiia Basha: Concept Drift Adaptation in Large-scale Distributed Data Stream Processing
1

2. Deutscher Abstract

Viele moderne Softwareapplikationen müssen in der Lage sein immense Datenmengen
über kurze oder längere Zeiträume zu verarbeiten. Traditionelle Techniken im Gebiet des
maschinellem Lernen, bei denen ein Modell erstellt, einmal trainiert und anschließend für
die Interpretation neuer Daten gebraucht wird, sind in diesem Szenario nicht mehr ohne
weiteres anwendbar. Dementsprechend entstand das neue Konzept des Online Learning.
Hierbei wird das Modell kontinuierlich mit den neuen Trainingsdatenpunkten aktual-
isiert, sobald diese eingetroffen sind. Ein wichtiger Aspekt des Online Learning ist, dass
es die zeitliche Dimension der Daten miteinbezieht. Die Datencharakteristiken sind nicht
zwangsläufig stabil und können sich über Zeit ändern. Dieses Phänomen ist bekannt
als Concept Drift [29]. Die Fähigkeit zur Adaption an sich ändernden Datencharakteris-
tiken über Zeit ist eine wichtige Voraussetzung für die Effektivität eines Online Learning
Algorithmus.

Die Notwendigkeit der Verarbeitung, kontinuierlicher, möglicherweise unendlicher Datense-
quenzen löste die Entwicklung von verschiedenen verteilten Streamverarbeitungs Frame-
works aus. Diese Arbeit Untersucht die Implementierung eines skalierbaren adaptiven
online learning algorithmus in einem dieser Systeme, Apache Flink. Diese Arbeit konzen-
triert sich auf die skalierbare Implementierung des Bagging Ensamble Algorithmus.

Dieser beinhaltet keine implizite Möglichkeit concept drifts zu verarbeiten, wir unter-
suchen verschieden Optionen zur Integration eines concept drift Mechanismus. Zusätzlich
analysieren wir verschieden Techniken um den Algorithmus robuster gegenüber falschen
Drift detektionen zu machen.

Diese Arbeit Untersucht außerdem verschiedene Evaluationstechniken für online Algorith-
men, weil traditionelle Methoden die im offline learning verwendet werden, zum Beispiel
Kreuzvalidierung, im Falle unendlicher Datenströme nicht ohne weiteres anwendbar sind.

2
Anastasiia Basha: Concept Drift Adaptation in Large-scale Distributed Data Stream Processing

3. Introduction

We live in the age when the speed and amounts of data produced are enormous. According
to a recent IDC report [59] the data generated in 2014 is estimated to be 4.4 zettabytes
(trillion gigabytes) and this figure is growing exponentially. The report predicts that by
2020 it will reach 44 zettabytes. In order to extract useful information from this big
amount of data new efficient and scalable algorithms are necessary. The use of traditional
machine learning strategies where data is stored, the learning model is built offline and
used on new unseen data, is limited by the inability of modern systems to process these
amounts of data in main memory. This sparked the development of multiple frameworks
for distributed processing of large data, like Apache Hadoop1 or Apache Spark2.

But in many cases data comes in form of potentially infinite streams. The models need to
be updated continuously and be ready to be used at any moment for making time-critical
decisions. This triggered the establishment of a whole new concept – Online Learning. In
online learning the model is trained on new samples as they arrive but it can be used on
new unseen data at any point of time. The areas where online learning gained its ultimate
popularity are Fraud and Spam Detection, Adaptive Recommender Systems, Time Series
Analysis and Sensor Data Analysis.

One important characteristic of online learning is the temporal dimension. Over time
the data distribution might change and online learning systems need to be able to adapt
to these changes. This phenomena is called Concept Drift [29]. One example of such
change might be the change in the interests of a person when doing online shopping. The
adaptive recommender system needs to be able to make valid recommendations based on
the new interests of the person.

There are many frameworks capable of processing data streams. They include Apache
Storm3, Google Cloud Dataflow4 and Apache Samza5. However the systems capable
of performing scalable machine learning on big data streams are at the stage of early
development. One of such systems is Apache SAMOA [3]. Algorithms implemented
in SAMOA can run on top of different distributed stream processing engines, including
Apache Flink.

Apache Flink [2] is a scalable stream processing engine which provides fault tolerance,
exactly-once message delivery guarantees, high-throughput and low-latency data process-

1Apache Hadoop: http://hadoop.apache.org/
2Apache Spark: http://spark.apache.org/
3Apache Storm: http://storm.apache.org/
4Google Cloud Dataflow: https://cloud.google.com/dataflow/
5Apache Samza: http://samza.apache.org/

Anastasiia Basha: Concept Drift Adaptation in Large-scale Distributed Data Stream Processing
3

3.1 Motivation

ing and strong consistency guarantees in presence of stateful computations [4]. These
properties together with the set of highly expressive data transformations available in
Streaming API make Flink a promising candidate system for implementation of scalable
machine learning algorithms.

3.1. Motivation

Apache Flink is a relatively new and promising open source tool in the world of the large
scale distributed systems processing. As such, its intended machine learning library is
for the moment limited, in particular for the streaming API. Although Apache SAMOA
provides many different algorithms which can run on top of Flink, we believe that native
implementation of ML algorithms would provide better performance and can benefit from
exploitation of multiple optimizations specific to Apache Flink.

In this thesis we explore the possibility of implementing scalable adaptive classification
algorithms in Apache Flink. As part of the work, we define the abstractions for imple-
mentation of different ML pipelines in Apache Flink. As the ability to adapt to concept
drift is one of the most important characteristics of a streaming algorithm, we aim at
studying available drift detection and adaptation techniques and identifying which ones
are the most suitable for implementation in Apache Flink.

In order to evaluate our implementation we study and implement the evaluation technique
for distributed online learning algorithms. In particular, our main concerns are adapt-
ability of the algorithm, latency of data processing and the throughput of the system.

3.2. Contributions

The contributions of this thesis are:

1. We defined the abstractions for implementation of scalable streaming algorithms in
Apache Flink (Section 6.3) and proposed a generic learning model which can be
used with arbitrary classification algorithm (Section 7.1).

2. We proposed a concept drift adaptation approach (see Algorithm 8) which makes
the model more resistant to false drift detections.

3. We implemented a generic adaptive bagging algorithm in Apache Flink, which can
be used with arbitrary base learner classifier and change detector. For our evaluation
we implemented a Naive Bayes classifier and the ADWIN change detector (Section

4
Anastasiia Basha: Concept Drift Adaptation in Large-scale Distributed Data Stream Processing

3.3 Thesis Outline

7.2). The algorithm proved to perform better in terms of classification accuracy and
execution time than the adaptive algorithms available in Apache SAMOA (Section
8.6).

4. We explored the evaluation techniques which can be used to measure the accuracy
of distributed algorithms and implemented k-fold bagging evaluation technique in
Apache Flink (Section 8.2). We implemented and compared several approaches to
measure accuracy of the algorithm in presence of concept drifts (Section 8.1).

3.3. Thesis Outline

In Section 4 we present a definition of online learning and requirements for large-scale on-
line predictive methods. Furthermore, we provide a definition and types of Concept Drift
and requirements for adaptive algorithms. Section concludes with an overview of typi-
cal applications which require the introduction of concept drift detection and adaptation
techniques.

Section 5 provides a detailed classification of existing change detection and adaptation
algorithms. It also presents an overview and detailed description of several single-model
and ensemble algorithms. Section concludes with a discussion of further problems which
may influence the efficiency of concept drift adaptation.

Section 6 provides an overview of Apache Flink Streaming engine and concepts which are
required for understanding of implementation details presented in the following sections.
Furthermore, the section discusses the components of adaptive online learning pipeline in
Flink.

Section 7 introduces the implementation details of the two algorithms we chose. The
section discusses and justifies the design choices we made during implementation.

In Section 8 we provide the results of our in-depth evaluation of the implemented meth-
ods. We describe an evaluation method and its implementation. Furthermore, the section
is divided into four parts: the first part presents the evaluation results on artificially gen-
erated datasets, the second part provides the results of evaluation on some real datasets,
third part presents the evaluation of both algorithms in terms of latency and throughput.
Finally, we compare the performance of our algorithm with several algorithms available
in streaming machine learning platform Apache SAMOA [3].

Section 9 presents an overview of the thesis results and future work.

Anastasiia Basha: Concept Drift Adaptation in Large-scale Distributed Data Stream Processing
5

4. Background

This chapter presents the background of the thesis. Section 4.1 elaborates on the concept
of Online Learning and the requirements which arise when learning from data streams.
Section 4.2 introduces the definition and types of Concept Drift. Learning in presence of
concept drift entails several other constrains. These constrains are detailed in the Section
4.2.3. The section concludes with examples of typical applications which require explicit
or implicit handling of concept drift.

4.1. Online Learning

Traditional machine learning algorithms operate in offline setting. That is when we have
all the data from the start and use this data to train our model. In most cases these
algorithms are of iterative nature, so each sample is used for training more than once.
The process results in a model that can be used for prediction on new unseen data items
[28]. In the era of Big Data a need emerged to process huge amounts of data over short or
long periods of time without storing it. This makes the previously proposed approaches
infeasible.

The requirements for a large-scale predictive methods are presented in [26]:

1. The algorithm should be trained continuously on blocks of data or separate samples,
rather than require all of the data from the beginning.

2. The algorithm should use each sample for training only once.

3. The size of the model should be independent from the size of the data and the model
should require an approximately constant amount of memory.

4. The algorithm should be ready for use at any point of training process.

But depending on available computational resources some of these conditions may be
relaxed. For example, there are algorithms with partial memory which store a window
of fixed or varying number of samples [28]. Section 5.1 presents the different types of
algorithms in more detail.

Another important aspect of online learning is temporal locality. Data streams tend to
evolve over time and models built with old data may loose accuracy as the distribution
from which the samples are drawn changes. So, another important criteria for an online
leaning algorithm is ability to handle evolution of the data over time [6].

6
Anastasiia Basha: Concept Drift Adaptation in Large-scale Distributed Data Stream Processing

4.2 Concept Drift

Examples of applications which can make use of online learning range from Time Series
and Sensor Data Analysis, Fraud and Spam Detection to Sentiment Analysis and Adaptive
Recommender Systems [53, 46, 43, 39]

4.2. Concept Drift

This section introduces a formal definition and existing types of Concept Drift, criteria
for evaluation of the ability of the algorithm to adapt to concept drift and the typical
applications which require an adaptation mechanism.

4.2.1. Definition

Learning algorithms operate in a dynamic environment prone to unexpected changes and
these algorithms are expected to adapt to these changes quickly by incorporating new
data. This unexpected change in the underlying data distribution is commonly referred
to as Concept Drift [28]. Although concept drift is an issue of many learning algorithms
like classification, regression and clustering, this work without loss of generality is focusing
on handling concept drift in classification setting.

Formally a classification task is defined as follows. The system is given a set of learning
examples in form of a pair (X, y), where X ∈ <n is a set of input features and y ∈ <1 is
a target variable [28].

According to the Bayesian Decision Theory [25] a classification problem can be defined
in probabilistic terms. The a priori probability P (ci) ∀ci ∈ C (where C is the set of all
possible classes) is the probability that the next sample which comes for classification is
of class ci. This probability reflects our prior knowledge about how likely are samples of
one class compared to others. The class-conditional probability density function p(X|ci)
∀ci ∈ C reflects the probability distribution of X when the class is known to be ci. The
final classification decision is based on the posterior probability

P (ci|X) =
p(X|ci)P (ci)

p(X)
(1)

Over time the concept drift may happen. The concept drift is said to happen between
time points t0 and t1 if

∃X : pt0(X, c) 6= pt1(X, c) (2)

Anastasiia Basha: Concept Drift Adaptation in Large-scale Distributed Data Stream Processing
7

4.2 Concept Drift

where pti is the joint distribution at the time ti:

p(X, ci) = P (ci|X)p(X) = p(X|ci)P (ci) (3)

So, the concept drift can take place in case one of the following change [34]:

• a priori probability P (ci)

• class-conditional probability p(X|ci)

• and consequently, posterior probability P (ci|X)

Based on the type of change in the data distribution two types of concept drift are
distinguished [28]:

• Real Concept Drift is defined as the change in posterior probabilities P (ci|X).

• Virtual Concept Drift happens when the distribution of incoming data p(X)
changes with no effect on posterior probabilities.

Although both types can affect the accuracy of the classifier in different ways, it is the
real concept drift that requires a substantial change in the underlying model in order to
be adapted to. This is the reason why research in this area is mainly concentrated on
handling the real concept drift.

4.2.2. Types of Concept Drift

Based on the way and the speed the old concept is substituted by the new one several types
of concept drift can be distinguished. The different types of concept drift are presented
in Figure 1 [28]. It is a one-dimensional example which depicts the change of the mean
of a variable.

Figure 1: Types of Concept Drift [28]

The abrupt change is characterized by a sudden switch from one concept to another. The
example of this is the sudden change in stock market prices and the behavior of the people

8
Anastasiia Basha: Concept Drift Adaptation in Large-scale Distributed Data Stream Processing

4.2 Concept Drift

due to some political, economic or social event. The incremental change refers to gradual
but consistent switch of the concept. The gradual concept drift entails some fluctuation
between the old and the new concepts before the final switch. An example of such a drift
might be the change in the music taste of the user. Another phenomena is the reoccurring
concept. For example, depending on the season of the year several products are in higher
demand. Finally, there also can be some noise, or outliers, in the data, which do not
require any change of the model. Ideally the learning method should be able to adapt to
any of the aforementioned concept drift types. In practice, however, methods generally
concentrate on one or two of them.

4.2.3. Learning in Presence of Concept Drift

Apart from the requirements presented in Section 4.1 several additional specifications are
imposed on the online learning methods in the presence of concept drift. These are also
the criteria for evaluation of the ability of the algorithm to handle concept drift:

• Delay. Reflects how fast the method can detect/adapt to the concept drift.

• Resistance to noise. Characterizes the ability of the method to distinguish the
noise in the data from the real concept drift.

• Cost of adaptation. Defines whether the algorithm needs to recompute the model
from scratch after detecting the concept drift, or the localized re-computation is
enough [21].

4.2.4. Typical Applications

According to [28] applications requiring the adaptation to concept drift can be grouped
into four categories:

• Monitoring and control. In this scenario the data is typically presented in form
of the time series and the task is to detect the anomalies. Examples include activities
on the web, computer networks, telecommunication and financial transactions.

• Management and strategic planning. This category includes predictive analyt-
ics tasks, such as estimating the creditworthiness, stock prises behavior or electricity
demand.

Anastasiia Basha: Concept Drift Adaptation in Large-scale Distributed Data Stream Processing
9

4.2 Concept Drift

• Personal assistance and information. This category encloses tasks like recom-
mender system, personal news or mail categorization.

• Ubiquitous environment applications. This category comprises systems which
interact with changing environments, for example, sensor data analysis.

Different types of applications may lay different priorities on the requirements presented
in Section 4.2.3. Some, like financial transactions monitoring task may put a delay as
the highest priority as they would need to detect the fraud as soon as possible. Others,
like ubiquitous environment applications, require a great resistance to noise to avoid false
reaction of the system.

10
Anastasiia Basha: Concept Drift Adaptation in Large-scale Distributed Data Stream Processing

5. Concept Drift Handling Methods

This section presents an overview of existing concept drift handling methods. Section 5.1
presents an elaborate classification of methods. In Section 5.2 we detail several algorithms
which use one learner instance. Section 5.3 presents a couple of ensemble methods which
exploit several instances of the learner. Finally, Section 5.4 discusses the issues which may
greatly influence the adaptation to concept drift and present some possible solutions.

5.1. Taxonomy of methods

This section presents an in depth classification of existing change detection/adaptation
methods. According to [28] and [38] change adaptation methods are generally classified
with respect to memory they require, type of forgetting mechanism they offer, type of
information they use for detecting/adapting to drift, model management (number of base
learners).

5.1.1. Type of Indicator

This categorization reflects the type of information that is used in order to detect the
concept drift and adapt a model to it [38]. The range of such indicators is wide, the most
common include:

• Classification accuracy is by far the most common type of indicator. The drop in
accuracy or the change in the average distance between the classification errors may
signify the change in the underlying concept. The methods based on classification
accuracy must be cautious of the drop in accuracy due to the noisy data.

• Time stamp can be used as a change indicator as well. For example, it can be
used as an input variable to the classification tree and when there is a slit on this
variable – the concept drift is signaled.

• Model complexity change for some classifier models can signal the concept drift.
The example of this can be the rapid increase in the amount of rules in the rule-based
classifier of the number of support vectors in SVM.

This list does not cover all the existing methods. Many of them use the combinations of
different measures as well as propose various custom concept drift indicators.

Anastasiia Basha: Concept Drift Adaptation in Large-scale Distributed Data Stream Processing
11

5.1 Taxonomy of methods

5.1.2. Model Dependency

This categorization stems from the fact that several concept drift detectors can be used
with any existing base learner while others are tightly coupled with a specific algorithm.
For example methods which use the accuracy as a concept drift indicator are generally
model-independent while those which use the time stamp as an input variable to the tree
can only be used with classification trees, consequently are model-dependent.

5.1.3. Processing Mode

By processing mode the algorithms can be divided into single example and window-based.
Single example algorithms process samples one by one in the order they arrive. Each
sample is used to update the model and then discarded. Consequently, these algorithms
do not have an access to the previous samples. Window-based algorithms are alternatively
called batch-based. They process data in windows of fixed or variable size. Algorithm may
opt to adapt the size of the window based on the stability of the system. When the
concept drift is detected the window size is decreased in order to contain only the samples
from the new concept, whereas when the concept is stable the window size is increased to
improve the model by incorporating more samples.

Figure 2: Processing Mode

5.1.4. Adaptation Mode

There are two distinct ways to adapt to the concept drift – detect it explicitly and
rebuild/enhance the underlying model or use some forgetting heuristics regardless of

12
Anastasiia Basha: Concept Drift Adaptation in Large-scale Distributed Data Stream Processing

5.1 Taxonomy of methods

whether the drift actually happened or not [38]. This second way is called implicit detec-
tion. The drawback of implicit detection is its high delay in concept drift adaptation. As
the old concept is being forgotten with a constant speed it also cannot build highly accu-
rate models when the concept is stable for long periods. The explicit detection algorithms
can be further divided by the way they adapt the model after the change is detected.
The easiest way is to replace the model completely upon the detection of the drift [28].
This category includes also the algorithms which work in so-called warning-alarm mode.
The algorithm has two levels/thresholds – after the first one is reached it is signaling the
concept drift warning. At this point algorithm starts to build the new model but still
uses the old one for classification. When the second level, alarm, is reached – the model
is replaced with a new one. More sophisticated way to adapt to the concept drift is to
enhance the model to incorporate the new knowledge without fully rebuilding it. There
are also methods which use the combination of aforementioned methods. These methods
are in the hybrid category.

Figure 3: Adaptation Mode

5.1.5. Model Management

In terms of model management all the learning techniques can be divided into single-model
and ensemble approaches. Ensemble model uses the combination of several ensemble
members to make a final prediction. These models have gained extreme popularity lately
as the ensemble of classifiers can often outperform a single classifier in the presence of
concept drift [54]. The ensemble approaches can be further divided into the following
groups [37]:

• Dynamic combiners. Given a set of learners trained on different subsets of data
the final decision is the combination of the outputs of these learners. The adaptation
to concept drift is done by changing the rule used to combine the decisions of the

Anastasiia Basha: Concept Drift Adaptation in Large-scale Distributed Data Stream Processing
13

5.2 Single Model Methods

individual learners. For example, each learner gets a weight that corresponds to its
accuracy on recent data.

• Updated training data. This group of algorithms uses the new data to update
all ensemble members. In order to keep the ensemble diverse, different ways to
choose the data distribution between members exist. They do not have an explicit
mechanism to track the concept drift and are generally used with external change
detectors.

• Structural changes to the ensemble. This group comprises the methods which
adapt to the drift in the data by making changes to the structure of the ensemble.
For example, a new member is built on each new chunk of data and old members
are discarded when they loose their accuracy.

The list in not exhaustive and these methods can also be combined to achieve better
performance.

Figure 4: Model management

5.2. Single Model Methods

This section presents the methods which use one instance of the learner.

5.2.1. Classifier-free methods

This section presents several concept drift detection methods which can be used with any
classifier.

14
Anastasiia Basha: Concept Drift Adaptation in Large-scale Distributed Data Stream Processing

5.2 Single Model Methods

ADWIN

Adaptive Windowing (ADWIN) method [15] maintains the sample window of maximal
size N . Whenever the change is detected it shrinks the window to include the samples
only from the new concept and when the concept is stable the window grows automati-
cally. The input to the algorithm is a confidence value δ ∈ (0, 1) and (possibly infinite)
sequence of values x1, x2, ..., xt, These values can be, for example, the current accuracy
measurements of the classifier after each sample. For every t the value xt is drawn from
some distribution Dt independently. We denote µt as the expected value when xt is drawn
from Dt. The value µt is unknown to us at every point of time t.

ADWIN keeps a sliding window W over the newest n samples. Let µ̂W denote the ob-
served average of the samples in the window W . The main idea of the algorithm is that
when two subwindows of W have a significant difference in averages we can assume that
the expected values are different and samples of these two subwindows are drawn from
different distributions. The older subwindow is then dropped. Algorithm 1 presents the
detailed description of ADWIN [15].

Let n = n0 + n1 denote the length of the window W and ni the length of the subwindow
Wi. The value of µ̂Wi

denotes the average of the subwindow Wi. We define:

m =
1

1
n0

+ 1
n1

(4)

δ′ =
δ

n
(5)

The value of the threshold εcut is computed as follows:

εcut =

√
2

m
· σW 2 · ln 2

δ′
+

2

3m
ln

2

δ′
(6)

The main limitation of ADWIN is memory and processing time requirements. Due to a
big amount of possible split points of the windowW it is very costly to check the condition
for all subwindows. The authors proposed a modification of this method which uses a
variant of the exponential histogram [22] for compression and requires only O (logW)
memory and update time. ADWIN is also slow to detect the gradual concept drift due
to the fact that it gives the same weight to all the samples in the window. In the case of
slow change it would be beneficial for the algorithm to give a larger weight to more recent
samples [14].

Anastasiia Basha: Concept Drift Adaptation in Large-scale Distributed Data Stream Processing
15

5.2 Single Model Methods

Algorithm 1 Adaptive Windowing
1: Initialize Window W
2: for all t > 0 do
3: W ← W ∪ {xt} . Add xt to the head of W
4: repeat
5: Drop elements from the tail of W
6: until |µ̂W0 − µ̂W1| ≥ εcut holds for every split of W into W = W0 ·W1

7: output µ̂W

DDM

Drift Detection Method (DDM) [30] is based on Statistical Process Control (SPC), a tech-
nique to monitor and control the quality of the product during a continuous manufacturing
[28]. The input to the algorithm is a sequence of pairs (xi, yi) where xi is a training sample
and yi is a boolean value which indicates whether the classifier did a correct prediction
on sample xi. Let pi denote the probability of false prediction in Bernoulli trials and si
as its standard deviation. The standard deviation is calculated as follows:

si =

√
pi (1− pi)

i
(7)

DDM exploits the fact that for a sufficiently large number (n > 30) of samples the Bi-
nomial distribution can be closely approximated by a Normal distribution with the same
mean and variance.

The algorithm manages two registers pmin and smin. For every new sample pi and si are
calculated and algorithm checks whether pi + si < pmin + smin. In this case pmin and smin
are updated with new values. Algorithm works in a warning-alarm way as explained in
Section 5.1.4. The condition checked at every step is:

pi + si ≥ pmin + α · smin (8)

Value of α is controlling the confidence level for drift. The authors propose α = 2 for
warning level and α = 3 for alarm level. This corresponds to 95% and 99% confidence
for warning and alarm respectively.

The main advantage of DDM is that it has O (1) memory and processing time complexity
in case we start to build a new model at a warning level point. The drawback is that
the algorithm requires at least 30 time steps after the drift is detected [56]. Also, the

16
Anastasiia Basha: Concept Drift Adaptation in Large-scale Distributed Data Stream Processing

5.2 Single Model Methods

approach is very efficient with detecting abrupt changes but has difficulties with gradual
drifts. If the change is slow it can pass without triggering the alarm level [9].

EDDM

Early Drift Detection Method (EDDM) was proposed as an enhancement of DDM to
improve the performance in presence of gradual drifts [9]. The main idea of the algorithm
is to take into account not only the number of the errors but also the distance between two
consecutive errors. It is based on the fact that when the concept is stable the distance
between the errors increases but when the concept drift is taking place – it decreases
notably.

Let p′i be the average distance between two errors and s′i its standard deviation. We track
two values p′max and s′max which reflect the point where the distance between two errors
reached its maximum. Whenever we encounter (p′i, s

′
i) : p′i+2s′i > p′max+2s′max we update

these values. The condition checked on each step is:

p′i + 2s′i
p′max + 2s′max

< α (9)

As with DDM the value of α will regulate the extent of the drift and the smaller it is –
the bigger confidence of the drift is. The authors propose to choose the values between
0.95 and 0.90.

The drawback of the method is similar to the DDM – it searches for concept drift only
when a minimum of 30 errors have happened. It works better in presence of gradual
concept drift than DDM but is more sensitive to noise [9].

ECCD

Exponentially Weighted Moving Average for Concept Drift Detection (ECCD) method uses
Exponentially Weighted Moving Average (EWMA) chart to monitor the misclassification
rate of a streaming classifier [48]. The input to the algorithm is a sequence of boolean
values x1, x2, ..., xt, ..., where xi = 0 when the predicted label was correct and xi = 1 if
it was incorrect. Let µt be the mean of the stream at time t, µ0 the mean of the stream
before concept drift and µ1 – after it. We know that before the change µt = µ0. More
specifically, the values xi will fluctuate around the value µ0. The EWMA estimator of µt
is defined as follows:

Z0 = µ0

Zt = (1− λ)Zt−1 + λxt
(10)

Anastasiia Basha: Concept Drift Adaptation in Large-scale Distributed Data Stream Processing
17

5.2 Single Model Methods

It is a recent estimate of µt which with the help of configurable parameter λ progressively
downweights the older data. According to Bernoulli distribution the pre-change standard
deviation of EWMA estimator will be defined as [58]:

σ2
Zt

=

√
p0 (1− p0)

λ

2− λ
(
1− (1− λ)2t

)
(11)

where p0 is a probability of misclassifying a point before the drift happens. As this
parameter is unknown at the beginning we need to estimate it. The estimator p̂0,t is
defined as follows:

p̂0,t =
1

t

t∑
i=1

xi =
t− 1

t
p̂0,t−1 +

1

t
xt (12)

Estimator Zt gives more weight to recent samples than p̂0,t which means that it is more
sensitive to change. When the drift occurs Zt is supposed to converge to new value µ1

faster. Consequently, when the difference between these two estimators becomes signifi-
cant it means that the drift takes place. So, we signal the change when:

Zt > p̂0,t + LσZt (13)

The control limit parameter L allows to achieve the constant rate of false positive change
detections. This parameter depends on the estimate p̂0,t at a given point of time t. Authors
use regression techniques to arrive at the polynomial approximations for the computation
of L. Algorithm 2 presents the complete method [48].

Algorithm 2 Exponentially Weighted Moving Average for Concept Drift Detection
1: Choose value for λ
2: Z0 = 0, p̂0,0 = 0
3: for all xt do
4: p̂0,t = t

t+1
p̂0,t−1 + 1

t+1
xt

5: σ̂xt = p̂0,t (1− p̂0,t)
6: σ̂Zt =

√
λ

2−λ

(
1− (1− λ)2t

)
σ̂xt

7: Compute value of Lt based on current value of p̂0,t
8: Zt = (1− λ)Zt−1 + λxt
9: if Zt > p̂0,t + Ltσ̂Zt then
10: Signal Concept Drift

18
Anastasiia Basha: Concept Drift Adaptation in Large-scale Distributed Data Stream Processing

5.2 Single Model Methods

Algorithms, like ADWIN, DDM, EDDM and ECCD are called drift detectors. The way
they can be used in distributed setting is creating a separate instance of drift detector for
each instance of learner. Another way would be to have a global instance of drift detector,
but this option would cause a potential bottleneck in the distributed system.

Paired Learners

The method proposed in [8] adopts a strategy of combining two learners – stable and
reactive ones. The stable learner is useful during the periods of time when the concept
does not change and by incorporating more data samples is very accurate. The reactive
learner is responsible for drift detection and is much more accurate during the periods
of concept change. By combining these two learners authors claim to have achieved the
accuracy comparable or better than that of many ensemble approaches.

The stable learner S is trained with all the samples starting from the last concept drift.
The reactive learner Rw is trained on the window of w recent samples. The stable learner
is used for classification while the reactive one servers as an indicator of drift. The
performance of both learners is tracked and when the reactive learner starts to outperform
the stable learner it might be an indication of concept drift, as it means that the older
samples are harming the performance of the stable learner.

In order to identify the point where it is beneficial to substitute the stable learner with
the reactive one the simple accuracy indicators over the last w samples is not enough. In
order to avoid the situations where the reactive learner was outperforming the stable one
at some point of time but lost its dominance later (this can happen, for example, when
the reactive learner has learned from the noisy data) authors proposed another method
to track the performance of the learners. They use the circular buffer C of w bits. When
the reactive learner classifies a sample correctly while the stable one not, a new bit in C
is set to 1. In other cases – the bit is unset. When the proportion of bits in the buffer
surpasses the threshold θ the stable concept is substituted with a reactive one and the
buffer is reset. Algorithm 3 introduces the Paired Learners.

The experiments showed that the method works comparably good or better in comparison
with several ensemble methods. It is an achievement taking into account that it uses only
two learners while the ensemble methods utilize up to 50. The main drawback of the
algorithm is the necessity to keep the window of samples. The parameter w, the size of
the window, has a great influence on how the algorithm performs in presence of abrupt
or gradual drift. Also, if the algorithm is unable to "un-learn" the given sample, the new
model will have to be built on the last w samples after the arrival of each new sample.

Anastasiia Basha: Concept Drift Adaptation in Large-scale Distributed Data Stream Processing
19

5.2 Single Model Methods

Algorithm 3 Paired Learners
1: Input:
2: w: window size
3: θ: threshold for substitution of stable learner
4: Initialize stable learner S, reactive learner Rw, circular buffer C
5: for all (xt, yt) do
6: yS = S.classify (xt)
7: yR = Rw.classify (xt)
8: if yS 6= yt ∧ yR = yt then
9: C.setBit ()
10: else
11: C.unsetBit ()

12: if θ < C.proportionOfSetBits () then
13: S = Rw

14: C.unsetAllBits ()

15: S.train (xt, yt)
16: Rw.train (xt, yt)

5.2.2. Classifier-specific methods

This section introduces several algorithms which use a specific implicit drift adaptation
mechanisms.

Hoeffding Trees

Very Fast Decision Tree (VFDT) [24] is a decision tree induction algorithm that was de-
signed to handle high speed data streams using constant memory and time per example.
Although the basic algorithm assumes that distribution of samples does not change over
time, it is a basis for a great amount drift adaptation algorithms. These VFDT enhance-
ments are examined later in this section. The appealing feature of the algorithm is that it
does not store the samples and at the same time guarantees that with a sufficient number
of samples the output will be asymptotically identical to that of a conventional learner.
The algorithm is based on the idea that a small sample size is ofter sufficient to choose the
best candidate attribute for a split. The optimal size of the sample within a predefined
precision is defined by Hoeffding bound. Hoeffding bound states that with confidence
1− δ after n independent observations, the true mean of real-valued variable r with range
R will not differ from the observed mean by more than:

20
Anastasiia Basha: Concept Drift Adaptation in Large-scale Distributed Data Stream Processing

5.2 Single Model Methods

ε =

√
R2 ln

(
1
δ

)
2n

(14)

The algorithm works as follows [29]. When the new sample arrives the tree is traversed
from the root to the leaf corresponding to this sample. Each leaf holds some statistics
which is recomputed when a new sample arrives. Let H (·) be the information gain
function for the attribute. Lets assume that after observing n examples in the leaf, xa
is an attribute with the highest H (·) and xb is one with the second-highest H (·). Let
∆H̄ = H̄ (xa) − H̄ (xb). If ∆H̄ > ε holds then according to Hoeffding bound with a
confidence of 1− δ attribute xa is the best attribute to split on. The leaf is transformed
into a decision node. In order to avoid evaluating these conditions on every step the
algorithm adopts a strategy to compute H (·) only when the minimum of k samples
arrived where k is a user-defined parameter.

In order to avoid a case when two attributes exhibit an equal values of H (·) for a very
long time because they are equally good for splitting another constant τ was introduced.
So when we reach the condition ∆H̄ < ε < τ the split is done on the currently best
attribute.

Concept-adapting Very Fast Decision Tree (CVFDT) [32] is proposed as an enhancement
to VFDT. The basic idea of CVFDT is the same but the algorithm manages to adapt to
the change by building an alternative subtree whenever the old one becomes questionable
and replaces it when the new subtree becomes more accurate. In particular, it keeps a
window w over the most recent examples. After every n new examples the algorithm
determines again the best candidate at every decision point. If on any node there is a new
best candidate the algorithm suspects that there was a concept drift and begins to build
an alternative subtree starting from this node while still keeping and updating the old one.
It uses the samples in the window as a validation set and when a new subtree performs on
average better than the old one – the old one is pruned. If after the a maximum number
of validations the old one performs on average better – the new subtree is pruned. If the
amount of alternative subtrees reaches the maximum number – the algorithm prunes the
lower-performing ones [11].

A good point about this algorithm is that it does not require to rebuild the model from
scratch whenever there is a change in the data but rather the necessary changes are
done on the subtrees. But as an implicit change adaptation algorithm it is slow to react
to the concept drift. Another drawback of the algorithm is the need to define several
parameters, such as n – the number of samples the algorithm needs to do another check
for the existence of better candidates. This implicitly means that we do not expect the

Anastasiia Basha: Concept Drift Adaptation in Large-scale Distributed Data Stream Processing
21

5.2 Single Model Methods

change to happen more often than every n samples which is an unrealistic assumption
[16].

Hoeffding Option Tree (HOT) [47] is based on a very similar idea as CVFDT except
that it does not keep the window of samples but adopts another strategy to prune the
low-performing subtrees, or options.

An enhancement of CVFDT algorithm was proposed in [16]. The authors use Hoeffding
Window Tree (HWT) in combination with such drift detectors as ADWIN and EWMA.
HWT is a decision tree based on a keeping sliding window of the last instances on the
stream. The main differences between CVFDT and HWT-ADWIN are that the alternative
subtrees are created as soon as the change is detected and there is no need to wait for
another n samples to arrive and that the old trees are replaced as soon as there is evidence
that the new tree is more accurate instead of waiting for another fixed amount of samples.
This allows the algorithm to react and adapt to changes more quickly.

Prototype-based Learning

The different approach to concept drift handling was proposed in [50]. SyncStream is
a prototype-based classification model, which maintains a set prototypes of the data in
a custom structure called the PTree. The authors also proposed two variants of exter-
nal concept drift detectors. One is based on Principal Component Analysis (PCA) and
another on statistical analysis.

The PCA-based drift detector as well as ADWIN splits the data points corresponding
to label l into two subsets with respect to the time of their arrival, Dt and Dt+1. The
algorithm then computes the angle between the major principal components of these two
sets. If the angle exceeds the certain threshold ε the concept drift is alarmed. Another
external concept drift detector proposed is based on statistical analysis. It is similar to
ADWIN but uses the extended Brunner and Munzel’s generalized Wilcoxon test statistic
[20, 44] to compare the differences between the class distributions of two data sets.

The PTree consists of two levels. The first level stores the set of maxP prototypes which
capture the current concept and the second level holds a set of maxC older concepts also
represented by the set of prototypes. In order to make a prediction on newly arrived
sample x the first level is used, the prototypes of current concept P . Let y ∈ P be the
prototype closest to x. The label of this prototype will be a classifier’s prediction. Also,
on each step the representativeness of the prototype is updated as follows:

Rep(y) = Rep(y) + Sign(x.trueLabel, y.label) (15)

22
Anastasiia Basha: Concept Drift Adaptation in Large-scale Distributed Data Stream Processing

5.2 Single Model Methods

Algorithm 4 SyncStream
1: Input: maxC, maxP , D
2: while NoError do
3: for all x ∈ D do . for each sample
4: y = NN (PTree, x) . find nearest prototype
5: x.label = y.label
6: if x.trueLabel == x.label then
7: y.Rep+ + . increase representativeness
8: else
9: y.Rep−− . decrease representativeness
10: PTree.insert (x)
11: if PTree.prototypeSize == maxP then
12: Sn = PTree.getNegativePrototypes ()
13: PTree.remove (Sn) . remove the prototype of negative representativeness
14: Su = PTree.getUnchangedPrototypes ()
15: P = ConstrainedSync (Su) . summarize
16: PTree.remove (Su)
17: PTree.insert (P)

18: if PTree.conceptSize == maxC then
19: PTree.removeOldestConcept ()

20: if Concept Drift then
21: Ps = Sample (PTree.prototypes)
22: Cs = ConstrainedSync (Ps)
23: PTree.prototypes.clear ()

where the initial value of Rep (y) is 1 and Sign (x, y) is the sign function which equals 1
if x = y and −1 otherwise. Obviously in order to be able to find the closest prototype
there should be a concept of distance between the samples. The point x is then added
to the prototype level. As the amount of prototypes that is kept on prototype level of
the tree is limited to maxP , authors proposed to use a data summarization technique by
adapting synchronization-inspired clustering [18, 51]. As the method has to be applied to
the supervised learning problem the authors modified the clustering method to take into
account the label data. Now, when the number of the prototypes on the prototype level
exceeds maxP , the algorithms performs the data summarization.

When the concept drift is detected by the external detector, the current prototypes on the
prototype level are further summarized and then saved to the concept level. If the amount
of concepts on the concept level exceeds maxC the oldest concept is deleted. Algorithm
4 describes the SyncStream in more detail.

Anastasiia Basha: Concept Drift Adaptation in Large-scale Distributed Data Stream Processing
23

5.2 Single Model Methods

The authors claim that the method can handle both the abrupt and gradual concept drift.
The experiments show that it is also resistant to noise in the data. The drawbacks are the
processing time and memory requirements of the algorithm. By configuring parameters
maxC andmaxP the maximum size of the PTree can be controlled. But the highermaxP
value is – the longer processing time is required, because each incoming sample needs to
be compared to all the prototypes on the prototype level. Also, the concepts saved on the
concept level of the algorithm can be used to manage the reoccurring concepts.

The authors do not discuss the potential of this algorithm to be used in distributed setting.
But taking into account the operations performed on PTree, like nearest neighbor search
and data points summarization, we assume that it would require to store the tree in some
sort of shared memory, which could be accessed by each worker. This could be a potential
bottleneck.

SVM-based method

The method proposed in [35] utilizes Support Vector Machine (SVM) to detect concept
drift. The algorithm uses a window of training examples. The size of the window adjusts
to the speed and amount of concept drift. The key idea of the method is to select the size
which minimizes the generalization error on new examples. To estimate the generalization
error the method uses a special form of ξα-estimates [33] which is an efficient method to
evaluate the performance of SVM.

ξα-estimators are based on the leave-one-out error estimation. Having a training set
S = ((x1, y1) , ..., (xn, yn)), the first element (x1, y1) is removed. This set is used to train
a classifier. The classifier is then tested on the held out example (x1, y1). If the classifier
gives an incorrect prediction it is said to produce a leave-one-out error. The process is
repeated for all the samples in the training set. The estimate of the generalization error
is the number of leave-one-out errors divided by number of samples in the training set n.
As the generalization error is very expensive to compute, the method uses ξα-estimator
to evaluate the upper bound on the number of leave-one-out errors instead of computing
it brute force.

ξα-estimators are computed from the two arguments, ~ξ – the vector of training losses at
the solution of the primal SVM training problem and ~α – the solution of the dual SVM
problem. Both vectors are available after the training of SVM.

The window adjustment algorithm works as follows. The window of samples is divided
time-wise in batches of fixed size m. At batch t, the most recent batch, the method
tries various window sizes (see Equation 16) by training a SVM for each resulting window
and computing the ξα-estimates bases on the result of training. The method chooses the
window size which minimizes the ξα-estimate. Algorithm summarizes the method [35].

24
Anastasiia Basha: Concept Drift Adaptation in Large-scale Distributed Data Stream Processing

5.3 Ensemble Methods

~z(t,1), ..., ~z(t,m)

~z(t−1,1), ..., ~z(t−1,m), ~z(t,1), ..., ~z(t,m)

~z(t−2,1), ..., ~z(t−2,m), ~z(t−1,1), ..., ~z(t−1,m), ~z(t,1), ..., ~z(t,m)

(16)

The main drawback of the method is the expense of computation. With each new batch
of data the method builds the SVM classifier k times, where k is the current amount of
data batches in the window. Another drawback is the fixed size of the batch, m. This
puts a strong assumption that the drift cannot occur more often than every m samples
which is not realistic and causes the delay in drift detection.

The authors do not mention is the algorithm can be effectively used in distributed en-
vironment. One possible way this could be done is to parallelize the computation of
ξα-estimators. This would thought require each parallel worker to have an access to each
batch of the data. This could be achieved by either some kind of shared storage or by
broadcasting the data to each parallel worker.

Algorithm 5 SVM-based Concept Drift Detection Method
1: for all h ∈ {0, ..., t− 1} do . for each batch h
2: train SVM on examples ~z(t−h,1), ..., ~z(t,m)

3: compute ξα-estimate on examples ~z(t,1), ..., ~z(t,m)

4: choose the window size which minimizes ξα-estimate

5.3. Ensemble Methods

This section presents an overview of ensemble methods. These methods use a set of
classifiers to make a final prediction on the sample. The classifiers are either trained on
different subsets of the data or with different parameters and are said to often outperform
the single-classifier approaches [54].

SEA

The Streaming Ensemble Algorithm (SEA) [52] was one of the first ensemble algorithms
to handle concept drift in the streaming data with classifier ensembles [28]. According to
classification in Section 5.1.5 this algorithm is adapting to concept drift with the help of
structural changes to the ensemble. The algorithm works in batch-mode. The ensemble
has a fixed size. The ensemble member Ct is built on each new chunk of data. This
member is kept until the next chunk of data arrives. When a new chunk of data arrives
the performance of all the old members of the ensemble is evaluated on this chunk. If

Anastasiia Basha: Concept Drift Adaptation in Large-scale Distributed Data Stream Processing
25

5.3 Ensemble Methods

Ct−1, the member built on the previous step, outperforms one of the existing ensemble
members – that member is substituted by Ct−1. The final classification decision is done
by simple majority voting.

The main concern of the algorithm is to introduce the right quality measure for ensemble
member. The classifiers diversity plays a very significant role in the ensemble performance.
That is why the accuracy of a classifier as a quality measure would not work because it
would produce a very homogeneous ensemble. Instead, authors proposed another method
to determine which classifiers should be favored. They retain the classifiers which correctly
classified the points on which the ensemble was nearly undefined. This also prevents the
susceptibility to noise which would be present were the authors to favor the classifiers
which make a correct prediction on the points incorrectly classified by the majority of the
members in the ensemble. More specifically, the authors define the following percentages
used to compute the the quality measure for the ensemble member T :

P1 = percentage of top vote-getter
P2 = percentage of second-highest vote-getter
PC = percentage for the correct class
PT = percentage for the prediction of the new tree T

If both the ensemble and the member T correctly classified the sample, the quality of T
is increased by 1 − |P1 − P2|. That is if the member T made a correct prediction when
the vote was close, it gets a bigger increase in its quality measure. If the member T was
correct but the whole ensemble made a wrong prediction its quality measure is increased
by 1 − |P1 − PC |. Finally, if the prediction of T was incorrect its quality measure is
decreased by 1− |PC − PT |.

The method adjusts to concept drift by pruning the old members of the ensemble when
they loose their accuracy. There is a trade-off between the ensemble’s fast reaction to
concept drift and the the noise sensitivity which depends on the block size. If the block
size is small the ensemble is more reactive to the drift but it is also more prone to learn the
noise in the data. On the other hand, when the block size is big the ensemble will require
more data to substitute the outdated members of the ensemble. Another parameter that
influences the ability of the ensemble to react to the change fast is the size of the ensemble.
The bigger the ensemble is – the slower the change adaptation will be. On the other hand,
during the stable data distribution periods the bigger ensemble is likely to perform better.
The algorithm is also computationally expensive, as each chunk of data is used to evaluate
the performance of each member in the ensemble.

With the presence of multiple learners which can run in parallel the method stands out
as a good candidate for implementation in the distributed setting. The method has two

26
Anastasiia Basha: Concept Drift Adaptation in Large-scale Distributed Data Stream Processing

5.3 Ensemble Methods

points of synchronization – the process of choosing a candidate member for eviction and
the voting point.

AWE

The method proposed in [54] is similar to SEA. The Accuracy Weighted Ensemble (AWE)
algorithm also learns a new classifier for each new data chunk and substitutes the low-
performing members with the high-performing ones. The main difference of the method
is in the way the final classification decision of the ensemble is derived. The method also
uses a different indicator of the member’s efficiency.

More specifically, each member Ci has a weigh associated with it which is reversely pro-
portional to the expected error of Ci on the new chunk of data St. Let us assume that St
consists of m samples in form of (x, y). The classification error of the classifier Ci with
respect to chunk St is 1 − f iy (x), where f iy (x) is a probability given by Ci that x has a
label y. The mean square error of Ci is computed as follows:

MSEi =
1

m

m∑
j=1

(
1− f iyj (xj)

)2
(17)

Let Y be the set of all possible values of label y. TheMSEi of the classifier which predicts
randomly based on the class distributions is computed as follows:

MSEr =

|Y |∑
i=1

p (yi) (1− p (yi))
2 (18)

The final weight that is assigned to the classifier is the difference between the MSEi of
this classifier and the MSE of random classifier:

wi = MSEr −MSEi (19)

The final classification decision is computed as weighted majority of the ensemble. At
each step the classifier with the lowest weight is removed from the ensemble.

It is worth mentioning that both SEA and AWE are able to handle reoccurring concepts
as they can utilize the members trained on old data. The defining factor is the chunk size
though.

Anastasiia Basha: Concept Drift Adaptation in Large-scale Distributed Data Stream Processing
27

5.3 Ensemble Methods

DWM

Dynamic Weighted Majority (DWM) method copes with the concept drift by dynamically
adding and removing members from the ensemble in response to fluctuations in the accu-
racy of the ensemble and its individual members [36]. The algorithm maintains a set of
experts each of which is assigned a weight wi. These weights reflect the performance of
each individual member and are used to produce a final weighted prediction.

Algorithm 6 Dynamic Weighted Majority
Input:
β: factor for decreasing weights, 0 ≤ β ≤ 1
θ: threshold for deleting experts
p: period between member removal, creation and weight update

1: m = 1 . number of members in ensemble
2: em = createNewMember () . create first member
3: wm = 1
4: for all (xt, yt) do . for each training sample
5: for all ei do . for each ensemble member
6: λ = ei.classify (xt)
7: if λ 6= yt and t mod p = 0 then
8: wi = βwi

9: σλ = σλ + wi . sum of weighted predictions
10: Λ = argmaxiσi . make weighed prediction
11: if t mod p = 0 then
12: w = normalizeWeights (w) . normalize the vector of weights
13: {e, w} = removeMembers ({e, w} , θ) . remove low-performing members
14: if Λ 6= yt then
15: m = m+ 1
16: em = createNewMember ()
17: wm = 1

18: train all members with (xt, yt)

The algorithm starts with one learner. Each new training sample is used to train every
classifier in the ensemble. The new learner is added when the ensemble classifies a sample
incorrectly. In order to prevent the algorithm from creating too many members when
the concept drift happens or when there is a noise in the data, the authors introduce
a parameter p which defines how often DWM creates and removes the members. Each
time the individual member misclassifies the sample its weight is decreased using the
multiplicative factor β. The weights of the members is then normalized in order to
prevent the new members to dominate the predictions. When the weight of a members
drops beyond parameter θ, it is removed.

28
Anastasiia Basha: Concept Drift Adaptation in Large-scale Distributed Data Stream Processing

5.3 Ensemble Methods

In order for an ensemble algorithm to be effective it needs to introduce some diversity to its
members. DWM does this with the help of varying the data each member is trained on as
each member starts at different time. DWM copes with concept drift by substituting the
members with low performance. The problem of this algorithm is the unlimited number
of members which depends only on the underlying data. This does not allow to predict
the memory usage of the algorithm. Another issue is the parameter p which as in many
algorithms controls a trade-off between fast adaptation to the drift and resistance to noise.

ASHT

Adaptive-Size Hoeffding Tree (ASHT) is an ensemble of Hoeffding Trees [17]. The method
is based on the intuition that smaller trees adapt to the changes more quickly than the
big ones, while big ones perform better during the stable periods. The algorithm keeps
an ensemble of Hoeffding Trees of different sizes, which guarantees a good diversity of
the ensemble. The size of the nth member of the ensemble is equal to twice the size of
the (n-1)th. When the number of split nodes in the tree surpasses the maximum allowed
value – it deletes some nodes to reduce its size. Also, each tree is assigned a weight which
is proportional to the inverse of the square of its error. It monitors the error with an
EWMA chart.

The algorithm keeps an ensemble of highly diverse members which has a good impact on
its accuracy and concept drift adaptation ability. Experiments show that it outperforms
the Hoeffding Option Tree on the number of datasets. The drawback of the algorithm is
the high memory and processing time requirements.

Ensembles of Restricted Hoeffding Trees

The method proposed in [13] builds an ensemble of Hoeffding Trees each of which is
limited to a small subset of attributes. The idea of the method is to enumerate all
possible attribute subsets of a given size k. Each tree models the interactions between
the attributes in its subset. As the results of the trees are not of equal importance the
method uses the predictions of each tree to train the set of perceptron classifiers. The
perceptron is built for each label value using Hoeffding trees’ class probability estimates
as the input data.

The perceptrons are built using stochastic gradient descent. The weights of the percep-
tron are updated after each training sample. An important aspect of stochastic gradient
descent is the learning rate. The traditional approach to setting the learning rate is to
decrease it as the amount of samples increases. The authors use the following equation to
set the learning rate, where m is the number of attributes and n is the number of training
samples we have seen so far:

Anastasiia Basha: Concept Drift Adaptation in Large-scale Distributed Data Stream Processing
29

5.3 Ensemble Methods

α =
2

2 +m+ n
(20)

The problem with this learning rate is that is assumes that the training data is identically
distributed. As the input data of the perceptron in this case is the prediction of the
classification tree, this is not the case. First, the accuracy of the tree tends to improve
over the time and second, it might as well deteriorate as the concept drift happens. In
these two cases we would like the learning rate to increase again in order to capture the
change. The authors tackle this problem by adding an external concept drift detector to
monitor the accuracy of each individual classifier and reset the learning rate when the
drift is detected. It is done by setting the value of n to zero. The very same explicit drift
detectors are used to reset the trees after the concept drift happens.

The approach is interesting in that it results in an ensemble of great diversity. The
problem of the algorithm is its computational complexity and huge memory requirements.
Given m attributes the algorithm generates all possible subsets of size k. This results in(
m
k

)
subsets. Consequently, the method is not applicable for high-dimensional problems.

However, the value of k = 2 proved to be very practical in many experiments. This is
due to the fact that many practical classification problems often appear to exhibit only
very low-dimensional interactions [13]. More interestingly, for artificial datasets the large
values of k (like m − 2) turned out to be beneficial, while for real ones - small values of
k(like 2) worked better. As

(
m
k

)
==

(
m

m−k

)
the method will produce the same amount of

trees for both cases. But even in this case the drawback of the method is that although
some trees prove to be useless in final decision and converge to a very low weight, they
still have to be maintained by the algorithm.

DDD

In [40, 41, 42] the authors present a thorough study on the influence of ensemble diversity
on tackling various types of drift. The method they present makes use of this study by
combining several ensembles with different levels of diversity to tackle various types of
concept drift and noise in the data. In their experiments they use the online bagging
technique introduced originally in [45].

The online version of bagging aims at simulating the batch version of bagging [19] on
potentially infinite data streams. The method proved to be very effective in improving
generalization performance in comparison with single-learner models [10]. The original
method constructs an ensemble of m learners each trained on the subset consisting of n
samples drawn from the original training dataset of size n at random, but with replace-
ment [19]. The number of times each individual sample will be used for the training
of the particular learner, K, follows the binomial distribution. In the online version of

30
Anastasiia Basha: Concept Drift Adaptation in Large-scale Distributed Data Stream Processing

5.3 Ensemble Methods

bagging authors exploit the fact that this binomial distribution can be approximated by
the Poisson (λ) distribution with λ = 1, given the infinite size of training dataset:

K ∼ exp (−1)

k!
(21)

The authors came to the conclusion that by varying parameter λ of the Poisson (λ)
distribution they can vary the diversity of the ensemble. The lower the value of λ is,
the smaller values it will produce resulting in ensemble members being trained on very
distinct subsets on data. By varying the diversity of the ensemble in this way they
have studied how diversity influences the adaptation of the ensemble to different types of
concept drift. The concept drift is classified by severity (high and low) and speed (high
and low, corresponding to abrupt and gradual drift). Initially two ensembles are being
trained – of low and high diversity. An external concept drift detector is used to detect
the point of change. After the change two new ensembles are created but the two old
ones continue to be trained. Thus, the study compares four strategies of concept drift
adaptation.

Figure 5: Diversity influence in presence of abrupt and gradual concept drift [41]

The results are shown on the Figure 5 [41]. The drift happens at time point 1000. Before
the drift the low diversity ensemble manages to capture the concept faster and achieves
better accuracy. In case of low severity drift(Figure 5(a)) the old high diversity ensemble
manages to learn the new concept faster than the others. The old data still provides some
useful insight here. But in case of high severity(Figure 5(b)) old data is harmful and the
new low diversity ensemble manages to learn the new concept faster than the old ones.

The situation looks different in case of gradual drift. In case of both low and high sever-
ity(Figure 5(c, d)) shortly after the drift the old ensembles perform better. It can be
explained by the fact that the concept very gradually diverts from the one they have
learned. Longer after the drift old high and the new low diversity ensembles achieve the
best performance.

Anastasiia Basha: Concept Drift Adaptation in Large-scale Distributed Data Stream Processing
31

5.3 Ensemble Methods

Taking this study into account the authors proposed a new method Diversity for Dealing
with Drifts (DDD) [41]. Algorithm 7 provides the detailed description. DDD uses external
drift detector and operates in two modes: before and after the drift. Before the drift two
ensembles are trained: low and high diversity ones. The low diversity ensemble is used
for classification and drift detection. When the drift is detected the new low and high
diversity ensembles are created. The old ensembles are still maintained though. The
old high diversity ensemble starts to learn in low diversity mode in order to capture the
new concept faster. The final classification in this mode is a weighted majority of three
ensembles: old low and high diversity and new low diversity ones. The new high diversity
ensemble is not considered because it will likely be slow in capturing the new concept.
The weights are proportional to the accuracies obtained since the point of drift. The
accuracies of new low diversity ensemble and old high diversity trained in low diversity
mode are constantly monitored in order to determine which of the two manages to capture
the new concept faster. One of the two is finally chosen and the algorithm switches to
stable mode again.

Algorithm 7 Diversity for Dealing with Drifts
Input:
W : multiplier weight for the old low diversity ensemble
pl: parameter for learning in low diversity mode
ph: parameter for learning in high diversity mode

1: mode = beforeDrift
2: Initialize hnl . new low diversity
3: Initialize hnh . new high diversity
4: accol = accoh = accnl = accnh = 0 . accuracies
5: stdol = stdoh = stdnl = stdnh = 0 . standard deviations
6: for all xt do
7: if mode == before drift then
8: prediction = hnl (xt)
9: else
10: sumacc = accnl + accol ∗W + accoh
11: wnl = accnl/sumacc

12: wol = accol ∗W/sumacc

13: woh = accoh/sumacc

14: prediction = weightedMajority (hnl (xt) , hol (xt) , hoh (xt) , wnl, wol, woh)
15: update (accnl, stdnl, accol, stdol, accoh, stdoh, xt)

16: drift = detectDrift (hnl, xt)

32
Anastasiia Basha: Concept Drift Adaptation in Large-scale Distributed Data Stream Processing

5.4 Further Problems with Concept Drift Handling

17: if drift == true then
18: if mode == before drift or (mode == after drift and accnl > accoh) then
19: hol = hnl
20: else
21: hol = hoh
22: hoh = hnh
23: initialize hnl
24: initialize hnh
25: accol = accoh = accnl = accnh = 0
26: stdol = stdoh = stdnl = stdnh = 0
27: mode = after drift
28: if mode == after drift then
29: if accnl > accoh and accnl > accol then
30: mode = before drift
31: else
32: if accoh − stdoh > accnl + stdnl and accoh − stdoh > accol + stdol then
33: hnl = hoh
34: accnl = accoh
35: mode = before drift
36: learn (hnl, xt, pl)
37: learn (hnh, xt, ph)
38: if mode == afterDrift then
39: learn (hol, xt, pl)
40: learn (hoh, xt, pl)

41: Output: prediction

The algorithm proves to be able to handle both abrupt and gradual change and is very
noise resistant due to the fact that the old ensemble is not discarded after the drift is
detected but depending on the accuracy either restored or substituted by highly accurate
new one. The main drawback of the algorithm is the high complexity and memory re-
quirement. Moreover, during the concept drift periods it requires twice as much resources
as in the stable one.

5.4. Further Problems with Concept Drift Handling

This section details some issues which may affect the drift adaptation and presents several
methods to handle these issues.

Anastasiia Basha: Concept Drift Adaptation in Large-scale Distributed Data Stream Processing
33

5.4 Further Problems with Concept Drift Handling

5.4.1. Class Imbalance Problem

Class imbalance problem is characterized by unequal number of training samples of differ-
ent classes. Such an imbalanced class distribution is often seen in data stream problems,
like fraud or intrusion detection in computer networks or medical diagnosis. Detecting
concept drift in imbalanced data streams is a more difficult task than in balanced ones.
When the drift involves the minority class the recall of it suffers a significant drop while
the overall accuracy does not reflect this. This is why the overall accuracy can be an
insufficient drift indicator if it affects the minority class [56].

DDM-OCI

The authors propose a new method called Drift Detection Method for Online Class Im-
balance (DDM-OCI) which is based on existing DDM method [56] described in Section
5.2.1. The main difference of the method is that it tracks the recall in the minority class
instead of the overall accuracy. The significant drop in the decayed recall of minority class
may indicate the drift in this class. For detecting which class is currently the minority
one, the class imbalance detector is proposed in [57].

For the class ck the current recall Rk is defined by n+
k /nk, where n

+
k denotes the number of

correctly classified examples with true label ck and nk is the total number of examples of
true label ck received so far. At time stamp t the recall will be updated by R(t)

k = η′R
(t−1)
k +

(1− η′) [x← ck] if the sample x is of class ck. The time decay factor η′ ∈ (0 < η′ < 1)
is supposed to emphasize the performance in current moment. The value of [x← ck] is
equal to 1 if sample x is correctly classified and 0 otherwise.

The method proves to detect the concept drift in minority class faster than DDM, but
is also more prone to false alarms. Also, the drift in minority class can as well happen
without affecting the minority class recall. Such drifts will not be detected by DDM-OCI
[55].

LFR

The Linear Four Rates (LFR) algorithm maintains the probability matrix CP where
CP [1, 1], CP [0, 0], CP [1, 0], CP [0, 1] are the underlying percentages of true positives
(TP), true negatives (TN), false positives (FP) and false negatives (FN) respectively.
It tracks four characteristic rates (True Positive Rate, True Negative Rate, Positive Pre-
dicted Value, Negative Predicted Value) of the classifier. The rates are computed as
follows: Ptpr = TP/ (TP + FN), Ptnr = TN/ (TN + FP), Pppv = TP/ (FP + TP),
Pnpv = TN/ (TN + FN).

34
Anastasiia Basha: Concept Drift Adaptation in Large-scale Distributed Data Stream Processing

5.4 Further Problems with Concept Drift Handling

The algorithm uses modified rates R(t)
∗ as the test statistics for P (t)

∗ . The rate R(t)
∗ is

computed asR(t)
∗ = η∗R

(t−1)
∗ +(1− η∗) 1{yt=ŷt} where η∗ is the time decay factor and 1{yt=ŷt}

is equal to 1 if yt = ŷt and 0 otherwise. The algorithm works in warning-alarm fashion
and requires two parameters: warning significance level (δ∗) and detection significance
level (ε∗) to be set for each rate.

In order to derive a reliable running confidence interval for R(t)
∗ the authors introduce a

method to obtain a reasonable empirical distribution function using Monte Carlo simula-
tion for given factor η∗, rate P∗ and number of observed values N∗.

The method proved to be less prone to false alarms than DDM-OCI and in many cases
is able to detect the drift earlier. The original method is applicable only to the binary
classification problems. Although by denoting the classes as minority and non-minority
ones the method can be perfectly applicable to multi-class classification problems.

Anastasiia Basha: Concept Drift Adaptation in Large-scale Distributed Data Stream Processing
35

6. Machine Learning in Apache Flink Streaming

This section introduces the basic concepts about streaming dataflow engine Apache Flink
[2] which are important for explanation of the scalable algorithms implementation. Section
6.1 presents basic concepts of Apache Flink: data stream, transformation and stream
partitioning. Section 6.2 introduces another important concept for implementation of
Machine Learning algorithms – state in Flink. Finally, Section 6.3 introduces the building
blocks for our Machine Learning pipelines.

6.1. Stream Transformations and Partitioning

The streaming pipeline in Apache Flink Streaming consists of multiple consequent data
transformations expressed by a flow of operators. Each operator may have multiple sub-
tasks (instances) which are processing samples in parallel. The number of subtasks is
defined by the parallelism of the operator. The stream produced by one of the subtasks
of the arbitrary operator then is either forwarded to the subtask of the next operator or
some kind of repartitioning takes place [2].

The main transformations in Apache Flink Streaming are :

Map/FlatMap

The transformation takes one element as an input and produces one(Map) or multi-
ple(FlatMap) elements as an output. The types of input and output elements might
differ.

KeyBy

This transformation is used to partition the stream into several disjoint streams based on
the given key.

Window

Window transformation is used to collect the samples into batches according to some
characteristic, like time, count or some custom condition.

Window Apply Function

The Window function is used to process the samples in the batch collected by the Window
transformation.

36
Anastasiia Basha: Concept Drift Adaptation in Large-scale Distributed Data Stream Processing

6.2 State in Apache Flink

It is important to mention that due to the parallel processing of the samples by the
subtasks of the operator the order in which the samples are produced by these subtasks
might not correspond to the order in which they came to the system. Flink introduces the
mechanism to reorder the samples based on the injection or event time but this entails
semi-batch data processing. The reason is that in order to reorder the data according to
event time it needs to be collected into windows first.

Another important note about Flink is lack of explicit communication mechanism between
operators and subtasks of one operator. Although it is an obvious design decision for
Apache Flink, it makes the implementation of Machine Learning streaming pipelines
quite difficult.

6.2. State in Apache Flink

Currently Flink supports two types of state. The non-partitioned state is inherent in each
instance(subtask) of operator. It means that this state is based solely on the input that
particular instance receives. The second type is partitioned state. This kind of state is
based on the particular partitioning of the input stream. For example, if a stream was
partitioned by the key, then there will be a separate state based on the samples of each
key.

6.3. Machine Learning Pipelines: Building Blocks

This section introduces the main components which are combined in order to build a
Machine Learning system.

6.3.1. Generic Learning Model

The general assumption we make about the learning process is presented in Figure 6. We
assume that our data source produces two types of items: labeled and unlabeled. The
labeled samples need to be integrated into the model. The unlabeled samples are to be
classified. The output consists only of unlabeled samples classified by the algorithm.

Anastasiia Basha: Concept Drift Adaptation in Large-scale Distributed Data Stream Processing
37

6.3 Machine Learning Pipelines: Building Blocks

Figure 6: Generic Learning Model

6.3.2. Base Classifier

The main component of the Machine Learning system is the base classifier. It is the
component which can access samples for both learning and classification. The training
samples are incorporated into existing model which is then used to classify the samples
without the label. The classifier itself can be the implementation of an arbitrary online
algorithm.

As the base classifier we used our implementation of Online Naive Bayes algorithm.

6.3.3. Change Detector

This component is responsible for detecting concept drift in the flow of training samples
and notifying the system which in turn has to accommodate the model to the new con-
cept. The change detector accepts the pair <real label, predicted label> and can be an
implementation of an arbitrary change detection algorithm.

6.3.4. Performance Tracker

This component handles the same input as the change detector and is used to track the
performance of the learning system. The decrease in the performance of the algorithm
can signalize the concept drift.

38
Anastasiia Basha: Concept Drift Adaptation in Large-scale Distributed Data Stream Processing

7. Implementation Details

This section introduces the implementation of two algorithms in Apache Flink Streaming.
Section 7.1 presents the implementation of the algorithm which we used as a baseline for
evaluation. Section 7.2 introduces the details of implementation of the bagging algorithm
in Apache Flink.

7.1. Baseline Algorithm

Considering the absence of a globally shared state in Apache Flink Streaming the base
approach to achieve scalability is to produce multiple instances of the same learning model
and use them for classification. Figure 7 depicts the dataflow for this algorithm. In order
to build multiple instances of the same learner we use the same training data for each of
the learners.

Figure 7: Baseline Algorithm: each learner is trained on the same data

We implemented this approach by broadcasting the training samples to each partition.
The unlabeled samples, on the other hand, are distributed among the learners for classi-
fication. As the input of each learner is a non-partitioned stream, each learner holds its
own non-partitioned state.

Each learner is equipped with its own change detector. The easiest way to adapt to
the concept drift would be to reset the model whenever the drift is detected. But this
approach results in the huge loss of accuracy during the recovery periods. Basically,
whenever the model is reset, it needs some number of new training samples in order to
recover. But if the model has to classify the samples during this period, the accuracy will
drop significantly. Moreover, the noisy data may result in false drift detections. So, there

Anastasiia Basha: Concept Drift Adaptation in Large-scale Distributed Data Stream Processing
39

7.1 Baseline Algorithm

is a need for a method which is more stable during recovery periods and resistant to false
concept drift detections.

Algorithm 8 Reactive Algorithm
1: Input:
2: θ: threshold for substitution of stable learner by reactive one
3: w: threshold for dropping the reactive learner
4: Initialize stable learner S, concept drift detector DT , reactive learner R
5: state = STABLE
6: cR = 0 . The counter for substitution of stable learner
7: cwarn = 0 . The counter for dropping the reactive learner
8: for all (xt, yt) do
9: yS = S.classify (xt)
10: if state = WARNING then
11: cwarn = cwarn + 1
12: yR = R.classify (xt)
13: if yS 6= yt ∧ yR = yt then
14: cR = cR + 1
15: if cR = θ then . Reactive learner outperforms the stable one
16: S = R
17: state = STABLE
18: cR = 0
19: cwarn = 0
20: else if cwarn = w then . Stable learner outperforms the reactive one
21: R.reset()
22: state = STABLE
23: cR = 0
24: cwarn = 0

25: DT.input(yS, yt)
26: if DT.driftDetected then
27: state = WARNING
28: S.train (xt, yt)
29: if state = WARNING then
30: R.train (xt, yt)

One of such methods is the Paired Learners method described in Section 5.2.1. But, as
was already mentioned, the disadvantage of this method is that it needs to either work
with a classifier that can "un-learn" the samples or a reactive model has to be rebuilt after
each incoming sample. This would induce a considerable slowdown of our learner. We
introduced a modification of the algorithm which takes an explicit concept drift detector
into account. Algorithm 8 introduces the details.

40
Anastasiia Basha: Concept Drift Adaptation in Large-scale Distributed Data Stream Processing

7.2 Bagging Algorithm

Whenever the concept drift is detected we do not reset the model but instead start building
the new model. The old stable model is still used for classification and the new training
samples are integrated into both of the models: stable and reactive. Starting from this
point we track the performance of the reactive model and if it outperforms the stable
model, we substitute it with the reactive one. This helps to avoid rapid decrease in
performance whenever the drift is detected. The algorithm has two parameters: θ – the
number of times the reactive model has to outperform the stable one in order to replace
it and w – the maximum window length during which we will track the performance of
both models. In this way we will also avoid reseting the model on the false drift detection
as the reactive model built on new samples will not outperform the old one unless there
is a real drift.

7.2. Bagging Algorithm

The ensemble algorithm we chose for implementation is online bagging described in Section
5.3. The reasons for this choice are mainly connected with the concepts of Apache Flink
Streaming engine. Specifically, Flink pipelines samples as soon as they arrive, which means
that an algorithm with the single-sample processing mode can benefit more from Flink
streaming. As data is not collected in batches, but pipelined immediately, each training
sample will be integrated into a model as soon as it is received. The second reason is
the constant number of learners in the algorithm. This will induce the constant memory
usage. Moreover, each learner receives nearly the same load of labeled and unlabeled
input samples which results in an equal load per learner. Another important reason is
the minimal communication between the learners imposed by the algorithm. As was
mentioned, Flink does not provide an explicit way of communication between operators
and subtasks of these operators. By minimizing the need for such communication the
algorithm will benefit in terms of data latency. Final considerations have to do with
the generic nature of the algorithm: it can work with arbitrary base classifier and change
detector. The amount of samples each learner is trained with, thus the ensemble diversity,
can be regulated with the Poisson λ parameter.

Figure 8 presents the data-flow diagram of the algorithm. The first stage for each sample
produced by data source is Data Distributor. In case of parallel Data Source and equal
parallelism of Data Source and Data Distributor operators the implementation can benefit
from operator chaining. This allows to pipeline all the samples produced by specific Data
Source to a Data Distributor on the same node without the need for stream repartitioning
and network communication. The Data Distributor is implemented as a FlatMap trans-
formation. For the labeled samples the Data Distributor uses the Poisson distribution
to compute which of the learners will receive this sample for training and the weight of
this sample for each particular learner. Unlabeled samples will need to be sent to each

Anastasiia Basha: Concept Drift Adaptation in Large-scale Distributed Data Stream Processing
41

7.2 Bagging Algorithm

learner as each of them needs to vote on it. This operator produces the records in format
<learnerID, item, weight>, where learnerID is used as a key for stream partitioning at
the next step and weight is assigned according to Poisson distribution. More details on
the implementation can be found in the Appendix A.1.

Figure 8: Bagging Algorithm: each learner is trained on different subset of data

Flink uses hash partitioning by the given key in order to deliver the samples assigned to
each learner. The learner is also implemented as a FlatMap transformation. Each learner
has its partitioned state where the model is kept. Labeled samples are integrated into the
model, unlabeled are classified and propagated to the output. Each learner outputs the
records in the format <itemID, item, label>, where the itemID is a unique id assigned
to each item and label is the classification result. The stream is repartitioned one more
time, this time using itemID as a key. This is necessary to enable voting on the final label
of the sample. For this we need to collect all votes in one operator. The learner code can
be found in Appendix A.2.

The voting takes place in WindowFunction. The current implementation performs simple
majority voting and outputs the final label for each sample. The code of this Window-
Function can be found in Appendix A.3.

As the algorithm is not implicitly adaptive it needs the explicit change detector in order
to handle concept drift in the stream. The complicated question for the current imple-
mentation is how to integrate the explicit change detector.

42
Anastasiia Basha: Concept Drift Adaptation in Large-scale Distributed Data Stream Processing

7.2 Bagging Algorithm

The two main components of the algorithm, the learner and the change detector need
some type of communication, as whenever the concept drift is detected every learner
needs to be notified.

(a) Local Drift Detector (b) Global Drift Detector

Figure 9: Bagging Algorithm Implementation Options

To enable this in Apache Flink we developed two options how to enable the communication
between these two components depicted in Figure 9. The first one is to unify these
components into one operator in order for them to share the state. The second one
is to use Flink iterations in order to deliver the concept drift signal up the pipeline to
the learner. In the case of iteration feedback we need to introduce the changes to the
way labeled instances are treated. Each learner needs to classify not only the unlabeled
instances but also labeled ones and after the final decision on the labeled instance is
made, the result must be sent to the drift detector. The detector tracks the accuracy of
the algorithm and in case of the drift sends the message up the iteration loop to the Data
Distributor. The Data Distributor then notifies the learners. The learner in this case
must be implemented as a CoFlatMap function to handle two different types of input –
the samples and the messages from detector. The option with the local detector for each
of the learners does not require the change in the introduced data flow.

A potential disadvantage of the global drift detector is the dependence of the delay in
signal delivery on the network speed and the load of the nodes. No guarantees can be
given on the average drift adaptation time. Moreover, the fact that all the samples need
to be classified and voted on can potentially harm the throughput.

On the other hand, the fact that the local drift detector handles exclusively the labeled
samples received by the particular learner makes it less stable and prone to false drift

Anastasiia Basha: Concept Drift Adaptation in Large-scale Distributed Data Stream Processing
43

7.2 Bagging Algorithm

detections. Moreover, when one of the learners detects the drift there is no way for it to
notify the others. And unless more than 50% of the learners adapt a model to the new
concept the global vote will be dominated by the old concept.

Considering these advantages and disadvantages the version we chose for implementation
and evaluation is the Local Drift Detector. In order to make the system more stable to
the false drift detections we use the reactive algorithm introduced in Algorithm 8 as the
base learner.

44
Anastasiia Basha: Concept Drift Adaptation in Large-scale Distributed Data Stream Processing

8. Evaluation

This section introduces the performance evaluation of the implemented algorithms. Sec-
tion 8.1 presents the overview of evaluation techniques for streaming problems. Section
8.2 presents the method we used for evaluation – k-fold bagging and details of its imple-
mentation. Section 8.3 presents the evaluation on artificial datasets. Artificial datasets
are good for evaluation of concept drift adaptation algorithms as they allow us to control
the points where the drifts occur. This section investigates how different configuration pa-
rameters of both algorithms influence their performance. Section 8.4 presents the results
of evaluation on some real datasets which are widely used for evaluation of concept drift
detection and adaptation techniques. Section 8.5 compares the implemented algorithms
in terms of their throughput and latency. Finally, Section 8.6 compares our bagging algo-
rithm with several algorithms available in streaming machine learning framework Apache
SAMOA [3].

8.1. Evaluating Accuracy of Streaming Algorithms

As stream learning algorithms are being actively studied now there is also a need in the
effective evaluation of these algorithms. The most popular methods of evaluating online
algorithms are predictive sequential evaluation and holdout an independent test set [27].

The holdout approach applies the current model to the test set at regular time intervals.
The test set consists of the samples preserved especially for the evaluation task. The
predictive sequential (prequential) [23] approach uses each incoming sample to first eval-
uate the current model and afterwards uses the sample to train (or update) the model.
The prequential evaluator is pessimistic, this means that in the same conditions it will
produce the higher error [27]. This can be explained by the fact that at each point of
time the model is trained on the smaller or equal amount of samples than in the holdout
set approach.

The basic prequential approach evaluates the performance of the algorithm over all the
stream. This results in the inability of this algorithm to reflect the current performance
in case of concept drift. As the model recovers from it by incorporating new samples,
the prequential error still includes the low performance estimates during the concept drift
period. This leads us to the conclusion that in order for this approach to reflect the
current performance of the algorithm it needs to take the temporal aspect into account.

There are two forgetting strategies for prequential algorithm presented in [27]. The first
approach keeps the fixed-size window over the newest samples to evaluate the performance

Anastasiia Basha: Concept Drift Adaptation in Large-scale Distributed Data Stream Processing
45

8.1 Evaluating Accuracy of Streaming Algorithms

on. The second approach uses the fading factor α to downweight the old samples. These
two approaches are similar in that each value of the fading factor corresponds to some
value of the window size. The prequential error with the forgetting mechanism converges
fast to the holdout error [29].

Figure 10: Comparison of Performance Estimation Strategies

The key difficulty of these two algorithms is selecting a proper value of the fading factor
parameter or the window size. The small window size will result in a fair reflection of the
accuracy during concept drift and fast adaptability of the performance evaluator. While
the bigger window size will produce lower variance estimations during the stable phases
[27].

In order to avoid this trade-off the authors of [12] propose using ADWIN algorithm de-
scribed in Section 5.2.1 as the way to choose the appropriate size for the window. The
method is parameter-free and adapts automatically to the current rate of change. This
allows to use it as a fair estimation of the current error rate average in the stream. The
comparison between the three discussed evaluation strategies is depicted in Figure 10.
The dataset used for this evaluation is artificially generated with two drifts at time points
100000 and 300000. The window size used for this case was 1000, which is obviously too
small as the variance of estimations during stable periods makes it hard to see when the
real drifts happened. The fading factor α used is 0.975, which, apparently, is too high
as the graph fails to depict the areas of concept drift. The ADWIN performance tracker
shows the best result and does not require any tuning of parameters.

46
Anastasiia Basha: Concept Drift Adaptation in Large-scale Distributed Data Stream Processing

8.2 K-fold Bagging Validation

8.2. K-fold Bagging Validation

The issue of model validation becomes particularly tricky for streaming algorithms. The
traditional techniques, like cross-validation, become infeasible in streaming setting due
to the unlimited amount of data. The authors in [12] propose a new strategy for model
validation in streaming context.

The method runs k instances of the same classifier. Each new sample is used in some
of the instances as a training sample, while in others as a testing sample. The authors
discuss three different strategies to determine the percentage of learners which receive the
sample for testing and for training:

• send the sample to one learner for training and to others for testing;

• send the sample to one learner for testing and to others for learning;

• use Poisson(1) distribution for each sample to compute the percentage. This option
will result in around two thirds of the learners receiving the sample for learning and
the remaining 1/3 for testing;

The first approach trains each learner on the disjoint data streams. It might potentially
underutilize the available data [12]. In contrast, the second approach will result in the
learners trained on almost identical datasets. This makes the the third approach a perfect
compromise.

8.2.1. Implementation in Apache Flink Streaming

We implemented the k-fold bagging evaluation technique in Apache Flink. The imple-
mentation is based on the data flow presented on the Figure 8.

For each incoming sample the Data Distributor will use the Poisson(1) distribution to
compute which of the learners will receive this sample for training and which ones for
testing. Each learner is equipped with its Performance Tracker. Taking into account the
results we received when comparing different performance trackers (see Section 8.1) we
chose the ADWIN tracker. When the learner receives the sample for training it trains the
model with it. With each incoming test sample the learners classify the sample, update
their performance and emit the result produced by performance tracker in the format
<itemID, performance>.

Anastasiia Basha: Concept Drift Adaptation in Large-scale Distributed Data Stream Processing
47

8.3 Evaluation on Artificial Datasets

The stream is be partitioned by itemID. The results for each particular item are collected
by the trigger and the Window Function computes the average performance over all
learners. The trigger used to collect the performance measurements from the learners
needs to know the exact number of learners the sample has been sent to for testing. For
this to work we implemented the custom trigger which receives this information with each
sample and waits for the correct number of samples before triggering.

Apache Flink poses a different challenge when trying to implement any evaluation tech-
nique. When the parallelism of the operators in the data flow is greater than one, the
order of resulting samples may not correspond to the order they came in. And in the case
when we are interested in temporal aspect of the accuracy we need to have the temporal
order of accuracy measurements. For this purpose we added the final operator to the data
flow – the CountWindowAll operator. The parallelism of this iterator is 1. It receives
the samples and assigns the timestamp to them in the order they were received at this
operator. This allows us to plot the accuracy over time.

This evaluation technique was implemented for both baseline reactive algorithm and bag-
ging with local change detector. These two algorithms are compared in the following
sections.

8.3. Evaluation on Artificial Datasets

The benefit of evaluating the algorithms on artificially generated data streams is that we
have control over the occurrence of concept drift, the type of the drift and the amount of
noise in the data stream. In this work we used the artificial data generators provided in
Apache SAMOA [3] framework. The data generators and parameters will be specified for
each particular experiment.

8.3.1. Baseline: Comparison of Reactive and Simple Reset Version

In Section 7.1 we proposed two options for the base learner algorithm: simple reset on
drift detection and reactive algorithm. The first just resets the model on drift detection,
whereas the second one replaces the stable model with the reactive one if outperformed.
This section compares the performance of these two versions.

The data used for this experiment was produced with stream generator for SEA concepts
functions proposed in [52]. The generator produces a three-dimensional feature vector for
a two class decision problem. The three real-valued attributes are in range [0, 10]. Only
the first two attributes are relevant for prediction. The class decision boundary is defined

48
Anastasiia Basha: Concept Drift Adaptation in Large-scale Distributed Data Stream Processing

8.3 Evaluation on Artificial Datasets

as x1 +x2 ≤ θ, where x1 and x2 are the first two dimensions of the feature vector and θ is
the decision boundary. To simulate the change of concept the value of θ is changed over
time. We generate two drifts. The first function uses value θ = 8, second θ = 9, third
θ = 7. Note, that second drift is more severe than the first one.

Each experiment is performed for two types of drift – abrupt and gradual. We generated
data with two consequent drifts – one at the point 100000 (samples) and another one –
at 300000. Note, that in this work we refer to the id (serial number) of the sample as
its time stamp. The point of the drift is in the center of the drift. Specifically, when the
drift is at the point 100000, and the width of the drift is 20000, it means that it starts
at a sample with id 90000 and ends at the one with id 110000. The noise percent in the
data is 25%. The noise is generated by changing the label of the sample to the opposite
one in the randomly chosen 25% of the samples . The width of the abrupt drift is 4 and
the width of the gradual drift is 50000.

(a) Two abrupt drifts (b) Two gradual drifts

Figure 11: Baseline Algorithm with simple reset base learner vs. with reactive base learner

Figure 11 presents the result of evaluation of two base learners. The change detector
used in this example is ADWIN. The reactive algorithm performs better in this setting
in terms of classification error rate. The reason is that whenever the real concept drift
takes place the drift detector tends to alarm drift detection multiple times which results
in great instability if we reset the model each time. As can be seen in Figure 11a at the
point 200000, a false drift detection caused the spike in the error rate. This was not the
case for the algorithm with reactive base learner.

In the following sections we use the Reactive Algorithm as the base learner for both
Baseline and Bagging Algorithms, as it clearly outperforms the plain reset algorithm.

Anastasiia Basha: Concept Drift Adaptation in Large-scale Distributed Data Stream Processing
49

8.3 Evaluation on Artificial Datasets

8.3.2. Bagging Algorithm: Number of Learners

In this experiment we explore how the error rate of the bagging algorithm expained in
Section 7.2 depends on the number of learners in the ensemble.

The setting (data source and types of drift) for the experiment is the same as in Section
8.3.1. The base learner we use for bagging algorithm is Reactive Learner with parameters
θ = 10 and w = 200. These values are optimal for this setting and were chosen after
several experiments with this dataset.

(a) Two abrupt drifts (b) Two gradual drifts

Figure 12: Bagging. Different number of learners

The result is presented on Figure 12. As we can see with the increase in the amount of
learners the accuracy increases, but at the same time the algorithm becomes less capable
to adapt to the concept drift. Before the (time)point of the first concept drift in both
cases the algorithm with 20 learners was the most accurate. But in 3 out of 4 drifts in this
experiment(both abrupt drifts and first gradual) the algorithm with 10 learners achieved
higher accuracy after the drift than the one with 15 and 20 learners. In the remaining
case (first abrupt drift, Figure 12a) it achieved the same accuracy as the one with 20, but
better than the one with 15. During the first gradual drift (Figure 12b) the algorithm
with 5 learners performed best in terms of classification error but failed to adapt as well
as the others to the drift. This could be the reason why it performed worse during the
second gradual drift.

As the algorithm achieved the best performance with n = 10, we use this number of
learners for the following experiments with this dataset.

50
Anastasiia Basha: Concept Drift Adaptation in Large-scale Distributed Data Stream Processing

8.3 Evaluation on Artificial Datasets

8.3.3. Bagging Algorithm: Poisson λ Parameter

This experiment investigates the dependence between the accuracy of our bagging algo-
rithm and the Poisson distribution λ parameter. In the case of bagging this parameter
defines which learners will receive a sample for training and assigns the weight to each
sample. Figure 13 depicts the Poisson robability mass function for three parameters:
λ = 1, λ = 2 and λ = 3. For each (discrete) value of k it shows the probability of this
value to be produced by the corresponding function. For example, for λ = 1 the proba-
bility to produce k = 0 is higher than for λ = 2. This means that the higher values of
this parameter are likely to produce higher weights for our samples.

Figure 13: Poisson Probability Mass Function

The data generator we use for this experiment is the same as in the Section 8.3.1. The
number of learners is 10. We use the reactive algorithm with parameters θ = 10 and
w = 200 for the base learner.

Figure 14 presents the result of the experiment. The experiment shows that the increase
in the value of λ makes the ensemble less capable to adapt to the drift quickly. This is
due to the fact that amount of samples each member in the ensemble was trained on is
higher with a higher value of λ. Moreover, with the increase in λ we tend to send the
samples to more base learners thus increasing the amount of data sent through network.
Due to this fact it might be better to choose the smaller value of λ.

Anastasiia Basha: Concept Drift Adaptation in Large-scale Distributed Data Stream Processing
51

8.3 Evaluation on Artificial Datasets

(a) Two abrupt drifts (b) Two gradual drifts

Figure 14: Bagging. Different values of λ parameter

8.3.4. Bagging Algorithm: Parameter θ in the Reactive Algorithm

This experiment examines the effect of the parameter θ in Algorithm 8 on the accuracy of
the bagging algorithm. The input data for the experiment is the same as in the previous
sections. The number of learners is 10 and Poisson parameter λ = 1.5.

As described in Section 7.1 parameter θ defines how many times the new reactive model
has to outperform the stable one in order to substitute it.

(a) Two abrupt drifts (b) Two gradual drifts

Figure 15: Bagging. Different values of θ parameter in reactive algorithm

52
Anastasiia Basha: Concept Drift Adaptation in Large-scale Distributed Data Stream Processing

8.3 Evaluation on Artificial Datasets

The result of the experiment is presented in Figure 15. The result suggests, that the use
of the reactive algorithm instead of the plain model reset (θ = 0) makes the performance
more stable in periods of drift adaptation, as was already mentioned in Section 8.3.1.
However, if the value of the parameter θ is too high, it results in an inability of the
algorithm to adapt to drift as it is for θ = 30. With θ = 20 algorithm does not manage
to adapt to first abrupt drift (Figure 15a) as good as the options with θ = 10 and θ = 0.
In case of gradual drift (15b) both θ = 20 and θ = 30 options are not able to detect the
first (less severe) drift. The θ = 20 does however detect the second gradual drift. The
algorithm with θ = 10 manages to adapt to all drifts better than the one with θ = 0.

8.3.5. Change Detector Sensitivity

This experiment examines the influence of the change detector sensitivity on the perfor-
mance of both baseline and bagging algorithms. We use the ADWIN change detection
algorithm. The parameter which defines the sensitivity of this detector is δ. The higher
the value of this parameter – the more sensitive the detector is. The potential problem of
highly sensitive change detectors are false alarms. With the introduction of reactive algo-
rithm (see Section 7.1) we hope to prevent the reset of the model on false drift detection.

(a) Two abrupt drifts (b) Two gradual drifts

Figure 16: Bagging. Different values of sensitivity parameter δ in change detector

Figure 16 depicts the influence of the sensitivity parameter on the accuracy of the bagging
algorithm. Figure 17 presents the same for the baseline algorithm. As can be seen in the
Figure 16a for the bagging algorithm in case of abrupt drifts the lower sensitivity change
detector (cases with δ = 0.02 and δ = 0.05) allowed the algorithm to adapt faster to
the drift. This was the opposite for the baseline algorithm – the change detector with

Anastasiia Basha: Concept Drift Adaptation in Large-scale Distributed Data Stream Processing
53

8.3 Evaluation on Artificial Datasets

the higher sensitivity (δ = 0.1) gave better performance in case of abrupt drift. For the
gradual drift with both algorithms (Figure 16b and 17b) the higher sensitivity detector
allowed the algorithm to detect the first drift (less severe) better, but proved to perform
the worst in case of second (high severity) drift. This can be explained by the fact,
that when the drift is more severe the highly sensitive drift detector tends to signalize it
multiple times. The reactive algorithm aims at improving the stability in these cases. The
result of this experiment shows that the reactive base learner indeed makes the algorithm
stable to false alarms, as the value of detector sensitivity actually has very little effect on
the performance.

(a) Two abrupt drifts (b) Two gradual drifts

Figure 17: Baseline. Different values of sensitivity parameter δ in change detector

Figure 18 compares the performance of bagging and baseline algorithm with sensitivity
values δ = 0.05 for bagging and δ = 0.02 for baseline. We can observe, that the bagging
algorithm performs slightly better in this case.

8.3.6. Comparison of Baseline and Bagging Algorithms

This section presents the comparison between the baseline and bagging approaches on
different artificially generated datasets.

Figure 19 presents the evaluation on the Agrawal dataset [7]. The data records are
characterized by 9 attributes (of both categorical and numerical types) and belong to
one of two classes Group A and Group B). The attributes are: salary, commission, age,
education level, etc. The drift is simulated by changing the rule which defines the class
of the record. There are 10 rules, each of them is defined over different sets of attributes.
The examples of the rules are:

54
Anastasiia Basha: Concept Drift Adaptation in Large-scale Distributed Data Stream Processing

8.3 Evaluation on Artificial Datasets

(a) Two abrupt drifts (b) Two gradual drifts

Figure 18: Comparison. Bagging sensitivity = 0.05. Baseline sensitivity = 0.02

Group A:
((age < 40) ∨ (age ≥ 60))
Group B:
otherwise

or

Group A:
((age < 40) ∧ (50K ≤ salary ≤ 100K))∨
((40 ≤ age < 60) ∧ (75K ≤ salary ≤ 125K))∨
((age ≥ 60) ∧ (25K ≤ salary ≤ 75K))
Group B:
otherwise

Both abrupt and gradual drifts happen at points 100000 and 300000. The width of abrupt
drift is 4 and the width of gradual drift is 50000.

The plot shows that bagging algorithm is capable of learning the new concept faster than
the baseline algorithm in all cases. By faster we mean, that the period of higher error
rate in points of drift is shorter for bagging algorithm. Also, the plot shows that the base
learner can learn some rules better than the others (for example, during the period of first
rule, before the point 100000, the error rate was lower than during the second rule, after
the first drift).

Figure 20 shows the performance of both algorithms on STAGGER dataset [49]. The
dataset has three independent attributes – size, color and shape. There are three different
concepts:

• Class A if size = small ∧ color = red, Class B - otherwise

• Class A if color = green ∨ shape = circular, Class B - otherwise

• Class A if size = medium ∨ size = large, Class B - otherwise

Anastasiia Basha: Concept Drift Adaptation in Large-scale Distributed Data Stream Processing
55

8.3 Evaluation on Artificial Datasets

(a) Two abrupt drifts (b) Two gradual drifts

Figure 19: Comparison on Agrawal Dataset

Drifts happen at points 100000 and 300000. The width of abrupt drift is 4 and the width
of gradual drift is 50000.

Both algorithms managed to learn the concepts very well and were able to adapt to drift
quickly.

(a) Two abrupt drifts (b) Two gradual drifts

Figure 20: Comparison on STAGGER Dataset

Figure 21 presents the evaluation on Hyperplane dataset [32]. The dataset can be gener-
ated with any number of attributes and any number of those can have concept drift. The
hyperplane is built by points that satisfy the equation

56
Anastasiia Basha: Concept Drift Adaptation in Large-scale Distributed Data Stream Processing

8.4 Evaluation on Real Datasets

d∑
i=1

wi ∗ xi = w0 (22)

The points lying on different sides of the hyperplane will belong to different classes. The
drift is simulated by changing the orientation and position of hyperplane. The magnitude
of this change can be controlled. High magnitude setting produces more abrupt drifts,
lower magnitude - gradual drifts. Each record in our generated dataset has 12 attributes,
8 of which are with concept drift, and 4 classes.

(a) Low magnitude drifting (b) High magnitude drifting

Figure 21: Comparison on Hyperplane Dataset

As we can see in Figure 21 both algorithms manage to adapt to the rotation of the plane.
The bagging algorithm in many cases manages to learn new concepts faster and achieves
lower error rate.

8.4. Evaluation on Real Datasets

This section presents the evaluation on several real datasets which are widely used for
evaluation of the adaptive algorithms. We choose two datasets - electricity price dataset
and airline dataset. This type of evaluation allows us to see how our algorithms perform
with real-life problems. However, no information about the presence of concept drifts or
their position is available for these datasets.

Anastasiia Basha: Concept Drift Adaptation in Large-scale Distributed Data Stream Processing
57

8.4 Evaluation on Real Datasets

8.4.1. Electricity Dataset

Electricity dataset [31] is a very popular benchmark dataset for performance evaluation of
algorithms with concept drift adaptation. The dataset covers two years of electricity prices
from New South Wales Electricity Market. The electricity price depends on the demand
and supply of the market. As the consumption habits change, the price of electricity is
subject to concept drift. The classification task is to predict whether the prices will go
up or down. Dataset has 45,312 data points, each characterized by 6 attributes.

Figure 22 presents the performance of baseline and bagging algorithms in comparison
with a classifier (Naive Bayes) with no concept drift adaptation.

Figure 22: Performance on Electricity Dataset

The introduction of drift adaptation mechanism to an algorithm has a clear benefit, as
both bagging and baseline algorithms perform better in terms of classification error rate.
The bagging algorithm performs better that others on this dataset. A spike in the error
rate level of algorithm with no change detection from point 10000 to point 20000 suggests
that there might be a concept drift during this period. There is, however, no such spike
in the error rate level of adaptive algorithms, both baseline and bagging, which means
that both managed to adapt to the drift.

58
Anastasiia Basha: Concept Drift Adaptation in Large-scale Distributed Data Stream Processing

8.5 Latency and Throughput Evaluation

8.4.2. Airline Dataset

The airline dataset [1] consists of records describing the flight details for all the commercial
flights within the USA. We used the normalized dataset available at [5]. The normalized
version of dataset consists of seven attributes (Airline, Flight, Airport From, Airport To,
Day Of Week, Time, Length). The records are sorted according to arrival/departure date.
We suppose that the concept drifts could be caused, for example, by the change of season
or the internal changes in the airlines (introduction of new vehicles, etc).

Figure 23: Performance on Airline Dataset

Figure 23 presents the results. The plot suggests that a drift happens around the point
200000, as before the performance of the algorithms with and without the drift adaptation
was very similar. After that point there are several spikes in the error rate level in all
the algorithms, the adaptive algorithms perform better, however. The bagging algorithm
showed a better result in terms of error rate than the baseline.

8.5. Latency and Throughput Evaluation

In this section we present the comparison of our algorithms in terms of latency and
throughput.

The setup for the experiment is the following. The cluster has one job manager node and
seven task manager nodes. Each node has 3.72 GHz IBM POWER7 processor with 12

Anastasiia Basha: Concept Drift Adaptation in Large-scale Distributed Data Stream Processing
59

8.5 Latency and Throughput Evaluation

physical cores, 4 threads each. The physical memory on each task node is 48 GB, Flink
managed memory for each task node is 20.4 GB.

The Flink configuration parameters which are crucial for evaluation of latency and through-
put are the number of task slots per task manager, buffer timeout and checkpointing pa-
rameter. The number of task slots per task manager defines how many parallel operator
instances can run on one task manager node. As the operator instances share the memory
of the node this value has to be configured carefully. Flink manual6 suggests to set this
number to the number of physical cores on the task manager machine. Experimenting
with different values we came to conclusion that in our case setting the value of 24, double
of the number of actual cores, has no negative influence on the latency, while allows to
achieve higher throughput.

Before one Flink operator sends the records to the next one in the data flow it can be
configured to collect the records in the buffers. Specifically, it can send the buffer once
it is full or after some timeout. The buffer timeout configuration parameter defines how
much time one operator will be waiting for more records before sending the buffer to the
next operator. A smaller value of this parameter will typically result in lower latencies but
might have a negative effect on throughput [4]. As we aim to compare the performance of
our algorithms, not the influence of Flink configuration on the performance, we set this
parameter to 50 ms and do no further changes to it.

The checkpointing parameter allows to switch the Flink checkpoining mechanism on.
Flink can periodically make state snapshots of a running stream topology and store them
to the durable storage [4]. As we wanted to avoid these delays which are not directly
related to the performance of our algorithm we switched the checkpoining mechanism off.

In the case of classification we will measure the latency as the time which it takes to
classify the record. More specifically, we will measure the time between the record enters
the first operator till it leaves the last one. The initial timestamp is set in the data source
which creates the record. As we use the parallel Flink data source we expect that the
record will be directly forwarded to the first parallel operator. We set the final timestamp
in the Map we added to the end of the dataflow.

In order to measure the scalability of both algorithms we measure how the latency is
influenced by the parallelism of the system. More specifically, we run our experiment
starting with one task manager machine (parallelism of 24) up to 7 (parallelism of 168).
We collect the statistics of per-sample latencies for time periods of more than 10 minutes.

The training data is generated by stream generator for SEA concepts functions [52],
already mentioned in Section 8.3.1. Each parallel data source instance generates a sample

6https://ci.apache.org/projects/flink/flink-docs-release-0.8/config.html

60
Anastasiia Basha: Concept Drift Adaptation in Large-scale Distributed Data Stream Processing

8.5 Latency and Throughput Evaluation

every 10 milliseconds. The data source is configured to generate 50% of labeled samples,
the rest are unlabeled.

Figure 24: Latency. Baseline algorithm

Figure 24 presents the summary for the Baseline algorithm. The box plot presents the first
(Q1), second (median) and the third(Q3) quartiles of the data points. It also shows the
minimum and maximum achieved latency values. The plot excludes the outliers (points
that are more than 3/2 times the interquartile range (Q3 − Q1) away from quartiles Q1

and Q3). We can see a very slight increase in the latency as the parallelism increases. This
can be attributed to the fact that each data source has to broadcast the labeled samples
to each learner. As the parallelism increases, the number of learners also increases and
each data source has to broadcast the training samples to bigger amount of learners. The
increase in the number of learners can potentially negatively reflect on the latency. But
as the experiment shows this influence is negligible.

Figure 25 presents the results for the Bagging algorithm. As we can see the median of the
latency of this algorithm is constant throughout all the parallelism values. This can be
attributed to the fact that the operator state is stored on one machine and not distributed
across multiple JVMs as in case of several task managers. The number of learners in this
experiment is set to 10 and stays constant throughout all the experiments.

The throughput evaluation was performed on the above described cluster with the same
configurations. The data source was now configured, however, to produce the records with
the maximum possible speed as the aim of this experiment is to measure the maximum
amount of records the algorithms can process in one unit of time. Also, as we are interested

Anastasiia Basha: Concept Drift Adaptation in Large-scale Distributed Data Stream Processing
61

8.5 Latency and Throughput Evaluation

Figure 25: Latency. Bagging algorithm

Figure 26: Throughput. Baseline algorithm

in the classification throughput we configured our data source to first train the model with
10000 samples and after that the model was used only for classification.

Figure 26 presents the result of evaluation for baseline algorithm. As expected, the
throughput per task does not change throughout the different values of parallelism, which
makes this algorithm linearly scalable. This can be explained by the fact that as the new

62
Anastasiia Basha: Concept Drift Adaptation in Large-scale Distributed Data Stream Processing

8.5 Latency and Throughput Evaluation

Figure 27: Throughput. Bagging algorithm

tasks are added, the new learners are created and each new learner can take the same
amount of load.

Figure 28: Total throughput. Bagging algorithm

Figure 27 depicts the result of evaluation for bagging algorithm. This plot shows that
the throughput per worker decreases as the amount of workers increases. This can be
explained by the fact that throughout the evaluation we do not change the amount of

Anastasiia Basha: Concept Drift Adaptation in Large-scale Distributed Data Stream Processing
63

8.6 Comparison with Algorithms in Apache SAMOA

learners. The algorithm can still benefit in terms of throughput from adding more workers,
as it means increasing the amount of data distributors and windows which handle majority
voting, but, obviously, there is a limit of machines, after which it makes no more sense
to add more. Figure 28 presents the total throughput of the system depending on the
number of machines. The plot suggests that the optimal amount of machines for our case
is 5, after which the total throughput of the system starts to decrease.

8.6. Comparison with Algorithms in Apache SAMOA

Apache SAMOA [3] is a distributed streaming machine learning framework. Among the
scalable classification algorithms implemented in Apache SAMOA are Vertical Hoeffding
Tree (VHT), Bagging, Adaptive Bagging and Boosting. VHT is a scalable verstion of
VFDT algorithm explained in Section 5.2.2. Adaptive Bagging is a version of bagging
where each learner is equipped with a concept drift detector. We compare the performance
of our algorithm with the VHT algorithm and Adaptive Bagging algorithm that uses VHT
as base learner and ADWIN as the change detector.

In order to be able to compare the performance of these algorithms we implemented the
prequential evaluation (see Section 8.1) in Flink, as this technique is also implemented
in SAMOA. As a performance tracker we used the Window Performance Tracker (see
Section 8.1). The size of the window is 10000.

(a) Two abrupt drifts (b) Two gradual drifts

Figure 29: Comparison with VHT and Adaptive Bagging algorithms. SEA concepts data
generator

64
Anastasiia Basha: Concept Drift Adaptation in Large-scale Distributed Data Stream Processing

8.6 Comparison with Algorithms in Apache SAMOA

Throughout all the experiments in this section we use our implementation of bagging with
10 learners, ADWIN as the change detector and reactive algorithm (see Section 7.1) for
base learner. Parameters for reactive learner are: θ = 10 and w = 200. The Poisson
parameter is λ = 1.5.

Figure 29 presents the comparison of the algorithms on the SEA concepts generator (see
Section 8.3.1). We evaluate the performance with both abrupt and gradual drifts. The
drifts happen at points 100000 and 300000. The first drift is less severe than the second
one. The percent of the noise in the data is 25%. The width of the abrupt drift is 4,
gradual – 50000.

Our implementation of bagging algorithm performs better in terms of classification error
rate with both types of drift. Moreover, it adapts to the concept drift much faster. What
is worth to note is that the non-adaptive VHT algorithm adapts to the drift almost as
good as Adaptive Bagging algorithm.

Figure 30 presents the result of the evaluation on Hyperplane dataset (see 8.3.6). The
parameters for data generation are the same as in the Section 8.3.6. We generate only
low magnitude drifts in this experiment.

Figure 30: Comparison with VHT and Adaptive Bagging Algorithms. Hyperplane data
generator

Our implementation of bagging algorithm performs better in terms of classification error.

Finally, Figures 31 and 32 present the evaluation on the real datasets described in Sections
8.4.1 and 8.4.2.

Anastasiia Basha: Concept Drift Adaptation in Large-scale Distributed Data Stream Processing
65

8.6 Comparison with Algorithms in Apache SAMOA

Figure 31: Comparison with VHT and Adaptive Bagging Algorithms. Electricity Dataset

Figure 32: Comparison with VHT and Adaptive Bagging Algorithms. Airline Dataset

The results of the experiments suggest that our bagging algorithm achieves higher clas-
sification accuracy in presence of concept drift than both adaptive bagging and VHT
algorithms. Note, however, that we tuned our algorithm, whereas in Apache SAMOA we
used the default parameter values.

66
Anastasiia Basha: Concept Drift Adaptation in Large-scale Distributed Data Stream Processing

8.6 Comparison with Algorithms in Apache SAMOA

Apache SAMOA can use Flink as underlying stream engine. Consequently, we can com-
pare the running times of our algorithm implemented natively in Apache Flink and the
Apache SAMOA algorithms running on Flink. The cluster setup for the experiment is the
same as in the Section 8.5. We used the parallelism of 168 (7 task manager machines).
For a dataset of 500000 samples (618 MB) it took SAMOA implementation of VHT on
average (from 4 runs) 113.25 s, Adaptive Bagging – 2670.75 s. Our implementation took
on average 33.5 s. Note, that the SAMOA job deployed to Flink did not use all the
available task slots.

Anastasiia Basha: Concept Drift Adaptation in Large-scale Distributed Data Stream Processing
67

9. Conclusion and Future Work

In this master thesis we explored different approaches to implement scalable adaptive
online learning algorithms in the distributed streaming dataflow engine Apache Flink.
Firstly, we developed an approach to distribute the arbitrary classification algorithm in
Flink. Secondly, we implemented an ensemble algorithm.

The main objective of the thesis was to integrate the change adaptation mechanism into
our implementation. We performed a comprehensive research into drift detection and
adaptation algorithms. Several ways to integrate the change adaptation into learning
algorithms in Flink were discussed. We implemented the one we found the most suitable
taking into account Flink engine specifics. Finally, we proposed a drift adaptation algo-
rithm which proved to be more resistant to false drift detections than simply building the
new model on each drift detection.

In order to introduce reliable and illustrative evaluation results we explored and compared
multiple evaluation techniques and implemented k-fold bagging evaluation. We performed
comprehensive comparison of the two main classification algorithms that we implemented.
Finally, we compared our adaptive bagging algorithm implementation with the algorithms
available in Apache SAMOA and achieved higher classification accuracy and lower exe-
cution times. With this, we prove that the native implementation of machine learning
algorithm in Apache Flink may achieve higher performance in terms of execution time
and better scalability than Apache SAMOA algorithms running on Apache Flink engine.

Finally, we came to the conclusion that Apache Flink Streaming engine is a very promising
framework for implementation of online machine learning algorithms. The limiting factor,
however, is the absence of some concept of shared state between task instances.

As future work we are interested in exploring how the bagging algorithm could be opti-
mized to deal with the class imbalance problem (see Section 5.4.1). Preliminary experi-
ments showed that the ability of the algorithm to adapt to the drift in the minority class
is much lower than when it happens in the majority class. The authors of [41] suggest
that the parameter λ in the bagging algorithm can be used to perform undersampling
for the majority class and oversampling for the minority class. However, oversampling
may lead to overfitting and undersampling may result in the loss of important features in
the data. We would like to investigate if this technique could be used for improving drift
adaptation capabilities of the algorithm without loss in classification accuracy.

68
Anastasiia Basha: Concept Drift Adaptation in Large-scale Distributed Data Stream Processing

References

References

[1] Airline dataset. http://kt.ijs.si/elena_ikonomovska/data.html. [Online; ac-
cessed 02-Apr-2016].

[2] Apache Flink: Scalable batch and stream data processing. http://flink.apache.
org/. [Online; accessed 22-Feb-2016].

[3] Apache SAMOA: Scalable advanced massive online analysis. https://samoa.
incubator.apache.org/. [Online; accessed 22-Feb-2016].

[4] Data artisans: High-throughput, low-latency, and exactly-once stream processing
with apache flink. http://data-artisans.com/blog/. [Online; accessed 25-Apr-
2016].

[5] MOA massive online analysis | real time analytics for data streams | datasets. http:
//moa.cms.waikato.ac.nz/datasets/. [Online; accessed 02-Apr-2016].

[6] Charu C Aggarwal. Data streams: models and algorithms, volume 31. Springer
Science & Business Media, 2007.

[7] Rakesh Agrawal, Tomasz Imielinski, and Arun Swami. Database mining: A perfor-
mance perspective. IEEE transactions on knowledge and data engineering, 5(6):914–
925, 1993.

[8] Stephen H Bach and Marcus A Maloof. Paired learners for concept drift. In Data
Mining, 2008. ICDM’08. Eighth IEEE International Conference on, pages 23–32.
IEEE, 2008.

[9] Manuel Baena-Garcıa, José del Campo-Ávila, Raúl Fidalgo, Albert Bifet, R Gavalda,
and R Morales-Bueno. Early drift detection method. In Fourth international work-
shop on knowledge discovery from data streams, volume 6, pages 77–86, 2006.

[10] Eric Bauer and Ron Kohavi. An empirical comparison of voting classification algo-
rithms: Bagging, boosting, and variants. Machine learning, 36(1-2):105–139, 1999.

[11] Albert Bifet. Adaptive learning and mining for data streams and frequent patterns.
PhD thesis, Universitat Politècnica de Catalunya, April 2009.

[12] Albert Bifet, Gianmarco de Francisci Morales, Jesse Read, Geoff Holmes, and Bern-
hard Pfahringer. Efficient online evaluation of big data stream classifiers. In Proceed-
ings of the 21th ACM SIGKDD International Conference on Knowledge Discovery

Anastasiia Basha: Concept Drift Adaptation in Large-scale Distributed Data Stream Processing
i

http://kt.ijs.si/elena_ikonomovska/data.html
http://flink.apache.org/
http://flink.apache.org/
https://samoa.incubator.apache.org/
https://samoa.incubator.apache.org/
http://data-artisans.com/blog/
http://moa.cms.waikato.ac.nz/datasets/
http://moa.cms.waikato.ac.nz/datasets/

References

and Data Mining, KDD ’15, pages 59–68, New York, NY, USA, 2015. ACM.

[13] Albert Bifet, Eibe Frank, Geoff Holmes, and Bernhard Pfahringer. Ensembles of
restricted hoeffding trees. ACM Transactions on Intelligent Systems and Technology
(TIST), 3(2):30, 2012.

[14] Albert Bifet and Ricard Gavalda. Kalman filters and adaptive windows for learning
in data streams. In Discovery science, pages 29–40. Springer, 2006.

[15] Albert Bifet and Ricard Gavalda. Learning from time-changing data with adaptive
windowing. In SDM, volume 7, page 2007. SIAM, 2007.

[16] Albert Bifet and Ricard Gavaldà. Adaptive learning from evolving data streams. In
Advances in Intelligent Data Analysis VIII, pages 249–260. Springer, 2009.

[17] Albert Bifet, Geoff Holmes, Bernhard Pfahringer, Richard Kirkby, and Ricard
Gavaldà. New ensemble methods for evolving data streams. In Proceedings of the 15th
ACM SIGKDD international conference on Knowledge discovery and data mining,
pages 139–148. ACM, 2009.

[18] Christian Böhm, Claudia Plant, Junming Shao, and Qinli Yang. Clustering by syn-
chronization. In Proceedings of the 16th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 583–592. ACM, 2010.

[19] Leo Breiman. Bagging predictors. Machine learning, 24(2):123–140, 1996.

[20] Edgar Brunner and Ullrich Munzel. The nonparametric behrens-fisher prob-
lem: Asymptotic theory and a small-sample approximation. Biometrical Journal,
42(1):17–25, 2000.

[21] Ireneusz Czarnowski and Piotr Jędrzejowicz. Ensemble classifier for mining data
streams. Procedia Computer Science, 35:397–406, 2014.

[22] Mayur Datar, Aristides Gionis, Piotr Indyk, and Rajeev Motwani. Maintaining
stream statistics over sliding windows: (extended abstract). In Proceedings of the
Thirteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’02, pages
635–644, Philadelphia, PA, USA, 2002. Society for Industrial and Applied Mathe-
matics.

[23] A Philip Dawid. Present position and potential developments: Some personal views:
Statistical theory: The prequential approach. Journal of the Royal Statistical Society.
Series A (General), pages 278–292, 1984.

ii
Anastasiia Basha: Concept Drift Adaptation in Large-scale Distributed Data Stream Processing

References

[24] Pedro Domingos and Geoff Hulten. Mining high-speed data streams. In Proceedings
of the sixth ACM SIGKDD international conference on Knowledge discovery and
data mining, pages 71–80. ACM, 2000.

[25] Richard O Duda, Peter E Hart, and David G Stork. Pattern classification. John
Wiley & Sons, 2012.

[26] Usama M. Fayyad, Gregory Piatetsky-Shapiro, Padhraic Smyth, and Ramasamy
Uthurusamy, editors. Advances in Knowledge Discovery and Data Mining. American
Association for Artificial Intelligence, Menlo Park, CA, USA, 1996.

[27] João Gama, Raquel Sebastião, and Pedro Pereira Rodrigues. On evaluating stream
learning algorithms. Mach. Learn., 90(3):317–346, March 2013.

[28] João Gama, Indrė Žliobaitė, Albert Bifet, Mykola Pechenizkiy, and Abdelhamid
Bouchachia. A survey on concept drift adaptation. ACM Comput. Surv., 46(4):44:1–
44:37, March 2014.

[29] Joao Gama. Knowledge discovery from Data Streams. CRC Press, 2010.

[30] Joao Gama, Pedro Medas, Gladys Castillo, and Pedro Rodrigues. Learning with drift
detection. In Advances in artificial intelligence–SBIA 2004, pages 286–295. Springer,
2004.

[31] Michael Harries and New South Wales. Splice-2 comparative evaluation: Electricity
pricing. 1999.

[32] Geoff Hulten, Laurie Spencer, and Pedro Domingos. Mining time-changing data
streams. In Proceedings of the seventh ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 97–106. ACM, 2001.

[33] Thorsten Joachims. Making large scale svm learning practical. Technical report,
Universität Dortmund, 1999.

[34] Mark G. Kelly, David J. Hand, and Niall M. Adams. The impact of changing pop-
ulations on classifier performance. In Proceedings of the Fifth ACM SIGKDD In-
ternational Conference on Knowledge Discovery and Data Mining, KDD ’99, pages
367–371, New York, NY, USA, 1999. ACM.

[35] Ralf Klinkenberg and Thorsten Joachims. Detecting concept drift with support vector
machines. In ICML, pages 487–494, 2000.

Anastasiia Basha: Concept Drift Adaptation in Large-scale Distributed Data Stream Processing
iii

References

[36] J Zico Kolter and Marcus A Maloof. Dynamic weighted majority: An ensemble
method for drifting concepts. The Journal of Machine Learning Research, 8:2755–
2790, 2007.

[37] Ludmila I Kuncheva. Classifier ensembles for changing environments. In Multiple
classifier systems, pages 1–15. Springer, 2004.

[38] Ludmila I Kuncheva. Using control charts for detecting concept change in streaming
data. Bangor University, 2009.

[39] Patrick Lindstrom, Sarah Jane Delany, and Brian Mac Namee. Handling concept
drift in text data stream constrained by high labelling cost. 2010.

[40] Leandro L Minku, Allan P White, and Xin Yao. The impact of diversity on online
ensemble learning in the presence of concept drift. Knowledge and Data Engineering,
IEEE Transactions on, 22(5):730–742, 2010.

[41] Leandro L Minku and Xin Yao. Ddd: A new ensemble approach for dealing with
concept drift. Knowledge and Data Engineering, IEEE Transactions on, 24(4):619–
633, 2012.

[42] Leandro Lei Minku. Online ensemble learning in the presence of concept drift. PhD
thesis, University of Birmingham, 2011.

[43] C Monteiro, R Bessa, V Miranda, A Botterud, J Wang, G Conzelmann, et al. Wind
power forecasting: state-of-the-art 2009. Technical report, Argonne National Labo-
ratory (ANL), 2009.

[44] Markus Neuhäuser and Graeme D Ruxton. Distribution-free two-sample compar-
isons in the case of heterogeneous variances. Behavioral Ecology and Sociobiology,
63(4):617–623, 2009.

[45] Nikunj C Oza. Online bagging and boosting. In Systems, man and cybernetics, 2005
IEEE international conference on, volume 3, pages 2340–2345. IEEE, 2005.

[46] M. Pechenizkiy, J. Bakker, I. Žliobaitė, A. Ivannikov, and T. Kärkkäinen. Online
mass flow prediction in cfb boilers with explicit detection of sudden concept drift.
SIGKDD Explor. Newsl., 11(2):109–116, May 2010.

[47] Bernhard Pfahringer, Geoffrey Holmes, and Richard Kirkby. New options for ho-
effding trees. In AI 2007: Advances in Artificial Intelligence, pages 90–99. Springer,
2007.

iv
Anastasiia Basha: Concept Drift Adaptation in Large-scale Distributed Data Stream Processing

References

[48] Gordon J Ross, Niall M Adams, Dimitris K Tasoulis, and David J Hand. Exponen-
tially weighted moving average charts for detecting concept drift. Pattern Recognition
Letters, 33(2):191–198, 2012.

[49] Jeffrey C Schlimmer and Richard H Granger Jr. Incremental learning from noisy
data. Machine learning, 1(3):317–354, 1986.

[50] Junming Shao, Zahra Ahmadi, and Stefan Kramer. Prototype-based learning on
concept-drifting data streams. In Proceedings of the 20th ACM SIGKDD interna-
tional conference on Knowledge discovery and data mining, pages 412–421. ACM,
2014.

[51] Junming Shao, Xiao He, Christian Bohm, Qinli Yang, and Claudia Plant.
Synchronization-inspired partitioning and hierarchical clustering. Knowledge and
Data Engineering, IEEE Transactions on, 25(4):893–905, 2013.

[52] W Nick Street and YongSeog Kim. A streaming ensemble algorithm (sea) for large-
scale classification. In Proceedings of the seventh ACM SIGKDD international con-
ference on Knowledge discovery and data mining, pages 377–382. ACM, 2001.

[53] S. Subramaniam, T. Palpanas, D. Papadopoulos, V. Kalogeraki, and D. Gunopulos.
Online outlier detection in sensor data using non-parametric models. In Proceedings
of the 32Nd International Conference on Very Large Data Bases, VLDB ’06, pages
187–198. VLDB Endowment, 2006.

[54] Haixun Wang, Wei Fan, Philip S. Yu, and Jiawei Han. Mining concept-drifting
data streams using ensemble classifiers. In Proceedings of the Ninth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD ’03, pages
226–235, New York, NY, USA, 2003. ACM.

[55] Heng Wang and Zubin Abraham. Concept drift detection for streaming data. In
Neural Networks (IJCNN), 2015 International Joint Conference on, pages 1–9. IEEE,
2015.

[56] Shuo Wang, Leandro L Minku, Diego Ghezzi, Daniele Caltabiano, Peter Tino, and
Xin Yao. Concept drift detection for online class imbalance learning. In Neural
Networks (IJCNN), The 2013 International Joint Conference on, pages 1–10. IEEE,
2013.

[57] Shuo Wang, Leandro L Minku, and Xin Yao. A learning framework for online class
imbalance learning. In Computational Intelligence and Ensemble Learning (CIEL),
2013 IEEE Symposium on, pages 36–45. IEEE, 2013.

Anastasiia Basha: Concept Drift Adaptation in Large-scale Distributed Data Stream Processing
v

References

[58] Arthur B Yeh, Richard N Mcgrath, Mark A Sembower, and Qi Shen. Ewma control
charts for monitoring high-yield processes based on non-transformed observations.
International Journal of Production Research, 46(20):5679–5699, 2008.

[59] Matt Zwolenski, Lee Weatherill, et al. The digital universe: Rich data and the
increasing value of the internet of things. Australian Journal of Telecommunications
and the Digital Economy, 2(3):47, 2014.

vi
Anastasiia Basha: Concept Drift Adaptation in Large-scale Distributed Data Stream Processing

Appendix

A. Bagging Algorithm Implementation Details

A.1. Data Distributor

1 class BaggingDataDistributor implements FlatMapFunction<Item, Tuple3<Integer, Item, Double>> {
2

3 public void flatMap(Item item,
4 Collector<Tuple3<Integer, Item, Double>> out) {
5

6 for (int i = 0; i < ensembleLength; i++) {
7 if (item.hasClassLabel()) {
8 int weight = Poisson(theta);
9 if (weight > 0) {

10 out.collect(new Tuple3<Integer, Item, Double>(i, item, weight);
11 }
12 } else {
13 out.collect(new Tuple3<Integer, Item, Double>(i, item, 0.0);
14 }
15 }
16 }
17 }

Listing 1: Bagging: Data Distributor

A.2. Learner

1 public class BaggingLearner extends
2 RichFlatMapFunction<Tuple3<Integer, Item, Double>,
3 Tuple3<String, Item, Double>> {
4

5 public void flatMap(Tuple3<Integer, Item, Double> tuple,
6 Collector<Tuple3<String, Item, Double>> out) {
7

8 if (item.hasClassLabel()) {
9 model.train(item);

10 } else {
11 Double label = model.classify(item);
12 out.collect(item.getId(), item, label);
13 }
14 }
15 }

Listing 2: Bagging: Learner

Anastasiia Basha: Concept Drift Adaptation in Large-scale Distributed Data Stream Processing
A.1

A.3 Majority Voting Window Function

A.3. Majority Voting Window Function

1 public class BaggingMajorityVotingFunction implements
2 WindowFunction<Tuple3<String, Item, Double>,
3 Tuple2<Item, Double> Tuple, GlobalWindow> {
4

5 @Override
6 public void apply(Tuple key, GlobalWindow window,
7 Iterable<Tuple3<String, Item, Double>> values,
8 Collector<Tuple2<Item, Double>> out) throws Exception {
9

10 HashMap<Double, Long> voteCounter = new HashMap<Double, Long>();
11 Item item = null;
12 int count = 0;
13 for (Tuple3<String, Item, Double> tuple : values) {
14 item = tuple.f1;
15 double label = tuple.f2;
16 Long currentCount;
17 if ((currentCount = voteCounter.get(label)) == null) {
18 voteCounter.put(label, 1L);
19 } else {
20 voteCounter.put(label, currentCount + 1);
21 }
22 }
23

24 double maxClass = -1;
25 long maxCount = -1;
26 for (Entry<Double, Long> entry : voteCounter.entrySet()) {
27 if (entry.getValue() > maxCount) {
28 maxCount = entry.getValue();
29 maxClass = entry.getKey();
30 }
31 }
32 out.collect(new Tuple2<Item, Double>(item, maxClass));
33 }
34 }

Listing 3: Bagging: Majority Voting Window Function

A.2
Anastasiia Basha: Concept Drift Adaptation in Large-scale Distributed Data Stream Processing

	List of Figures
	List of Listings
	List of Algorithms
	Acronyms
	English Abstract
	Deutscher Abstract
	Introduction
	Motivation
	Contributions
	Thesis Outline

	Background
	Online Learning
	Concept Drift
	Definition
	Types of Concept Drift
	Learning in Presence of Concept Drift
	Typical Applications

	Concept Drift Handling Methods
	Taxonomy of methods
	Type of Indicator
	Model Dependency
	Processing Mode
	Adaptation Mode
	Model Management

	Single Model Methods
	Classifier-free methods
	Classifier-specific methods

	Ensemble Methods
	Further Problems with Concept Drift Handling
	Class Imbalance Problem

	Machine Learning in Apache Flink Streaming
	Stream Transformations and Partitioning
	State in Apache Flink
	Machine Learning Pipelines: Building Blocks
	Generic Learning Model
	Base Classifier
	Change Detector
	Performance Tracker

	Implementation Details
	Baseline Algorithm
	Bagging Algorithm

	Evaluation
	Evaluating Accuracy of Streaming Algorithms
	K-fold Bagging Validation
	Implementation in Apache Flink Streaming

	Evaluation on Artificial Datasets
	Baseline: Comparison of Reactive and Simple Reset Version
	Bagging Algorithm: Number of Learners
	Bagging Algorithm: Poisson Parameter
	Bagging Algorithm: Parameter in the Reactive Algorithm
	Change Detector Sensitivity
	Comparison of Baseline and Bagging Algorithms

	Evaluation on Real Datasets
	Electricity Dataset
	Airline Dataset

	Latency and Throughput Evaluation
	Comparison with Algorithms in Apache SAMOA

	Conclusion and Future Work
	References
	Appendix
	Bagging Algorithm Implementation Details
	Data Distributor
	Learner
	Majority Voting Window Function

