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Abstract

In this thesis, we design and develop the preliminary scope of a Workflow Manage-
ment System (WMS) which is aimed to work on top of Stratosphere, one of the
emerging large-scale data processing frameworks. The WMS is developed by means
of a Domain Specific Language (DSL) which is deeply embedded in Scala high-level
programming language. The aim of this workflow DSL is to enable the progammer
to define the workflow of complex use cases without having to manually specify the
dependencies between the tasks in the workflow. Control Flow and data dependencies
are automatically detected by static analysis on the program code using our compiler
framework.

The goal to translate the user program written in our DSL to the target code
is achieved through the following three stages: (1) generate a control flow graph
as an intermediate representation (IR) from Abstract Syntax Trees (AST) of the
program, (2) perform data flow analysis to enrich the graph with data dependencies
information, and (3) generate code or job scripts for the underlying system. This
research develops the algorithm for each of three stages as well as the implementation
of the first stage of the overall process. In the evaluation, we argue over the advantages
of this DSL compared to related WMS work in terms of productivity and generality
i.e. extensibility to other underlying platforms.
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Chapter 1

Introduction

With the advancement of Big Data Analytics, numerous systems for cluster comput-

ing on big data have been developed [37, 6, 29, 10, 36, 26] and data engineers are

building more and more complex applications to manage and process large data sets

on distributed resources. Such complex application scenarios require means in order

to compose and execute complex workflows. Workflows automate procedures that

users would otherwise need to carry out manually [12]. It refers to a sequence of

steps or computations that a user would like to perform 1. As an example, within a

Hadoop 2 cluster, a user may need to export the production databases and load the

data to the Hadoop File System (HDFS) as the first step. The second step would be

to run a MapReduce job to clean up the data and the third step is a set of operations

that run in parallel to count and filter the data. A workflow is intended to map all of

the different operations together. Such a workflow is usually represented as a Directed

Acyclic Graph (DAG) where the nodes can be tasks or control flow structures and

edges represent the relationships between tasks, namely task or data dependency. A

Workflow Management System (WMS) is a system that allows users and developers

to create, define, run, and delete a workflow 1.

As an introduction to what a workflow may look like, we will walk through two

different use cases that are representative use cases in the Big Data environment.

1http://www.crobak.org/2012/07/workflow-engines-for-hadoop
2http://hadoop.apache.org/.
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The first use case is Analytics/Data Warehousing. A workflow in this first use case

consists of the following steps: (1) load the logs into the Fact tables, (2) load the

database backups into the Dimension tables, (3) compute the aggregations and per-

form rollups/cubes inside Hadoop for instance, (4) load the data into a low latency

store, and (4) in the end, perform the analytics using a Dashboard and BI tools. The

workflow of the first use case is depicted in Figure 1-1. The second use case is related

to machine learning or collaborative filtering. A workflow in this use case consists

of the followings steps: (1) load the logs and database backups into the HDFS, (2)

perform the collaborative filtering and machine learning computation, (3) produce

the production datasets in Hadoop, for example, (4) perform the sanity check of the

production data set, and (5) at the end, load the cleaned data to production data

store 1.

Figure 1-1: Workflow for Analytics/Data Warehousing 1

1.1 Motivation

The current existing WMS, which will be explored further in section 2.3, mainly act as

a ”glue” of simple jobs defined by the developer. Data dependencies and control flow

in the workflow (e.g. decision making, looping, and branching) are specified manually

in the model. This manual specification of dependencies causes a large overhead to

the programmer. Thus, it would be convenient if there exist a design of a WMS that

is able to automatically detect the control flow and data dependencies between the

2



tasks based on pure program code that is written in a specific language familiar to

the programmer.

The overall goal of this thesis is to design and preliminary develop a WMS pro-

totype that works on top of Stratosphere [2], an emerging large-scale data processing

framework developed by TU Berlin, Humboldt Universität zu Berlin, and the Hasso-

Plattner-Institut funded by the Deutsche Forschungsgemeinschaft (DFG). The ap-

proach that will be taken to define the workflow specification is to develop a Domain

Specific Language (DSL) [31] on top of Scala [24] high-level programming language.

The idea is to build a WMS that will take as an input a program, in which the

programmer defines a set of tasks associated with each other in a given sequence in

a high-level language that is fairly similar to Scala, only with a set of restrictions.

The WMS and then execute the tasks. Control flow and data dependencies will be

automatically detected by static analysis on the program code. The WMS will subse-

quently execute the tasks in a sequence that is according to the control flow and data

dependencies. Language integration has been an old goal in the database community.

We would like to query, manipulate, store and process data in the same language.

The first step to building this ideal WMS is to develop the programming model

for the workflow DSL. In principle, a workflow language is required to have a model

to maintain the tasks and the relationships between the tasks, both control flow and

data dependencies. We will define the grammar of DSL to guide the programmer to

write a workflow specification in our DSL. This workflow specification will be taken

by the WMS as the input program. After the workflow specification is defined in the

input program, the process of compiling the program into the target code to be run

in the Stratosphere is divided into three stages as follows: (1) conversion from input

program to an intermediate representation (IR) in a form of a control flow graph

whereby the nodes of the graph represent tasks that can be run at once, (2) enrich

the control flow graph with data dependencies between the nodes of the graph by

performing data flow analysis, and (3) conversion of the IR which is the control-flow-

enriched data flow to the script of the jobs. We will define a language grammar for

this Scala DSL. This grammar defines the scope of Scala grammar [25] that can be
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understood, analyzed and later processed by our DSL to generate the IR and final

job scripts to be run in the WMS. The overall framework of our DSL, compiler, and

WMS is depicted in Figure 1-2. With regards to these stages of development, our

contribution in this thesis is summarized as follow:

• define the DSL grammar and programming model for our workflow,

• analyze the user program to produce an IR in the form of a control flow graph,

and

• present an algorithm to detect data dependencies between each node of the

graph as well as an algorithm to generate the job scripts for the target machine

with regards to the second and third stage of the WMS development.

The most important aim of this process, as mentioned in the beginning, is to

avoid the manual job of defining dependencies, both tasks and data, when building

the workflow. In an Oozie 3 workflow, an existing workflow system for Hadoop,

nodes in the DAG are forward-chain, that is, the programmer is required to specify

manually where a node or a computation in the DAG goes after it finishes. This can

be hard to track and it forces the developer to remember every node in the chain

when developing the workflow 4. Thus, the Scala DSL that we aim to develop will

focus around dependencies. The developer needs to look at one node in a workflow

at a time, but does not need to define the tasks that that node depends on, the

dependencies, both control flow and data dependencies, will be discovered by Scala

code analysis. In performing the code analysis, we identify the self-contained jobs

within branches of the Abstract Syntax Tree generated by the Scala compiler before

finally generate the code for the underlying system.

In the evaluation (Chapter 4), we argue over the advantages of this DSL compared

to related WMS work in terms of productivity and independence of underlying plat-

form by selecting a use case that is representative of use cases running on large-scale

3http://oozie.apache.org
4https://github.com/klout/scoozie
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Figure 1-2: Overall Framework for DSL, Compiler, and WMS
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data processing platform. We show that even though currently our workflow DSL can

only run on Stratosphere, it can easily be extended to be used on another system.

Definition 1.1.1. A domain specific language (DSL) is ”a programming language

or executable specification language that offers, through appropriate notations and ab-

stractions, expressive power focused on, and usually restricted to, a particular problem

domain”. [31]

1.2 Thesis Outline

Chapter 2 contains the background and related work on workflow systems and data

flow systems. When presenting the literature survey, we also introduce the approach

of our workflow model and workflow language.

Chapter 3 presents the implementation part of our DSL, compiler stages, and WMS.

We define the grammar of our workflow language and talks about the process of

transforming the user program to the target code for the underlying system through

the three stages.

Chapter 4 discusses about the advantages of our workflow DSL in terms of ease of

use and extensible to other platform by means of implementing a sample use case.

Chapter 5 is the conclusion in which we summarize our contribution throughout

this research and present the limitations and potential future works.

6



Chapter 2

Background, Approach, and

Related Work

The study and development of workflows and WMS have been conducted for years and

in various field (i.e. e-Science, Grid computing, and recently Big Data Analytics). In

this chapter, we present the background on workflow systems which includes workflow

design and workflow language, as well as introducing the design and programming

model approach for our workflow language. Furthermore, we also present some of the

related work on workflow and data flow systems especially those developed to run on

top of large-scala data processing platforms.

2.1 Workflow

Workflow systems [35, 12, 32, 5] provide a way for programmers to arrange the tasks to

be executed in a variety of different ways (a workflow is defined formally in Definition

2.1.1). A workflow is especially important for applications in which data dependencies

exist between the tasks. A flexible mechanism of arranging the tasks is necessary

so that data produced by some tasks can be consumed by others [20]. In order

to execute such a workflow, we require a WMS [32] (refer to Definition 2.1.2 for a

formal definition of WMS). Workflow languages are some kind of meta programming

language in which operations correspond to tasks that are executed by external pieces
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of software, usually remotely [20]. Commonly used design patterns in workflows have

been surveyed by van der Aalst et. al. [30], Bharathi et. al. [7], Pautasso and Alonso

[27], and Yildiz, Guabtni, and Ngu [33].

Definition 2.1.1. Workflow is ”the computerized facilitation or automation of a

business process, in whole or part” [16].

Definition 2.1.2. Workflow Management System is ”a system that completely de-

fines, manages and executes workflows through the execution whose order of execution

is driven by a computer representation of the workflow logic” [16].

2.1.1 Workflow Design

[35] classifies the design of a workflow to at least three taxonomies, namely: (a)

workflow structure, (b) workflow model/specification, and (c) workflow composition

system. In the view of workflow structure, a workflow is composed by connecting

multiple tasks according to their dependencies. In general, the workflow may be

represented as a DAG or non-DAG. The workflow that we develop in this thesis

classifies into non-DAG-based workflow. In a non-DAG workflow, workflow structure

is categorized into sequence, parallelism, choice, and iteration. Sequence is defined as

an ordered series of tasks, with one task starting after a previous task has completed.

Parallelism represents tasks which are performed concurrently, rather than serially.

In choice control pattern, a task is selected to execute at runtime when its associated

conditions are true. In iteration structure, also known as loop, sections of workflow

tasks in an iteration block are allowed to be repeated. Iteration is often occurred in

workflow of complex use cases [35].

Workflow Model, or workflow specification, defines a workflow in terms of its task

definition and structure definition. There are two types of workflow models, namely

abstract model and concrete model, denoted as abstract workflow and concrete work-

flow, respectively [11]. In the abstract model, a workflow is described in an abstract

form, in which the workflow is specified without referring to specific resources for

task execution. The abstract model enables users to define workflows without being

8



concerned about low-level implementation details. In contrast, the concrete model

binds workflow tasks to specific resources [35]. In this thesis, we implement the ab-

stract workflow in a form of control flow enriched data flow. Furthermore, we also

provide the algorithm to achieve the concrete workflow, namely the job scripts to

be executed in the underlying system. The representation of abstract workflow and

concrete workflow of our design will be presented in details in Chapter 3.

Figure 2-1: Thesis Workflow Design Approach

Workflow composition systems are designed for enabling users to assemble com-

ponents into workflows [35]. It consists of two classes: (1) user-directed and (2)

automatic. User-directed composition systems allow users to edit workflows directly,

whereas automatic composition systems generate workflows for users automatically

[35]. Both classes are adopted in this thesis. More specifically, in the user-directed,

language-based modeling is applied since we require the users to write their program

in our workflow DSL. However, the control flow and data dependencies will later be

identified automatically by performing the static analysis of the user program. In

this case, users are not required to specify manually the workflow components and

dependencies. In summary, the taxonomy of workflow that we develop in this thesis

is depicted in Figure 2-1.
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2.1.2 Workflow Language

[20] well summarizes the common concepts of workflow language. Some of those

concepts compose the programming model of our workflow language. We describes

these concepts and map them in a high-level manner to our programming model in

the following points:

• Tasks refer to units of work that are used within a workflow. Each task takes

as input a set of values, and produces another set of values as output when

executed. A task can thus be considered equivalent to a function. Each task in

our abstract workflow corresponds to a node in our control-flow-enriched data

flow. Whereas, in our concrete workflow, a task corresponds to one job that

will be executed in the underlying system.

• Data dependencies are directional relationships between tasks, each indicat-

ing that the input of one task is an output of another. These data dependencies

determine which data to supply as input when executing a task as well as the

relative order of the execution of the tasks. In our abstract workflow, these data

dependencies correspond to directional data flow edges in the graph.

• Control dependencies indicate a constraint on the relative order of execution

of two tasks, without implying data transfer. They only occur in tasks with

special effects, whereby data dependencies alone are not sufficient to determine

the ordering.

• Parallelism is enabled by establishing the dependencies in the structure of the

workflow. Any set of tasks that are not dependent on each other can be executed

in parallel. The WMS uses the control and data dependencies to automatically

determine which set of tasks to run in parallel.

• Conditional branching and iterations in a workflow language is similar to

branching and iterations in a conventional programming language. Based on a

certain condition, a conditional branch selects which part of the workflow will

be subsequently executed. The condition itself is performed by executing a task

10



with some input data and returns a boolean value. Iteration enables part of

the workflow to be run multiple times, such that in each iteration, tasks within

the loop body are executed with different input value, given that the condition

of the iteration is satisfied. Our workflow language supports both conditional

branching and iterations.

• Representation of a workflow normally consists of a graph, whereby nodes

correspond to tasks and edges to dependencies. Parallel execution uses the de-

pendency information to determine which tasks can be executed in parallel. The

representation of our workflow language will be presented in detail in Chapter

3.

2.2 Control Flow vs Data Flow

In addition to the three taxonomies described in section 2.1.1, most, if not all, work-

flow designs belong to one of the two classes: control flow or data flow. The two

classes are similar in that they specify the interaction between individual tasks in the

workflow. The difference between the two classes lies in their method of implement-

ing that interaction. In control-driven workflows, or control flows, the connections

between the tasks in a workflow represent a transfer of control from the preceding

task to successor task. This includes control structures such as sequences, condi-

tionals branching, and iterations. Data-driven workflows, or data flows, on the other

hand, are designed to support data-driven applications. The dependencies represent

the flow of data between workflow activities from data producer to consumer [12].

More details explanation on control flow and data flows are presented in the following

subsections.

2.2.1 Control Flow Model

Most control flow languages provide support not only for simple flows of control

between components in the workflow but also for more complex control interactions

11



such as iterations and conditionals branching. Users of workflow systems often require

more than the simple control constructs that are available to them. The ability to

perform branching in the workflow based on conditions and loop over sections of the

workflow repeatedly is important for all applications especially for complex use cases

[12]. The important issue here is how to represent these conditionals and iterations

in the workflow language and to what degree the language should support them. For

instance, there is a question to whether a single simple loop construct is enough, or

whether the language should support all loop types(i.e. while, do while, for). In the

case of conditional behavior, the problem is determining whether the incoming value

and the conditional value are equivalent or inequivalent (i.e. less than, greater than,

etc) [12].

The term control flow refers to parts of a program that determine what com-

putation is to be performed, based on various conditions [20]. Examples of control

flow constructs include conditional statements, iteration, function calls, and recur-

sion. Control flow does not necessarily dictate the exact order in which execution will

occur, but rather determines which expressions will be evaluated in order to com-

pute the final result of a program. Most workflow languages provide limited forms of

control flow, such as conditional statements and sequential iteration.

Standard control flow constructs such as conditionals branching and iterations in

a User Defined Function (UDF) are supported by most large-scale data processing

systems such as Stratosphere [3] and Spark [38]. However, Stratosphere does not

support conditionals branching on the outer level or outside UDFs which is the main

motivation to introduce workflow on top of it. Spark, on the other hand, also al-

lows the user to define workflows with conditionals branching and iterations [37]. In

Spark API, for example, expressions can include standard arithmetic, relational, and

boolean operators, as well as their primitive operators such as map, reduce, filter,

etc. The result of an expression may be used in any place that a regular value may

be, such as input to a conditional test for a branching or an iteration. Below is the

example of expression in a condition test that can be understood by Spark API for

branching and iteration, respectively.

12



if (A.reduce(_ + _) < 30)

while (B.reduce(_ + _) < 10000)

2.2.2 Data Flow Model

In a data flow model, a workflow is represented by a task dependency graph, in which

the nodes of the graph correspond to tasks and edges to data dependencies. The

graph specifies a relative order of execution, by constraining each task to begin only

after those it depends on have completed assuming that each task is free of side effects,

and that its output depends only on its inputs [20]. Most data flow representations

are very simple in nature, and unlike their control flow counterparts, contain nothing

apart from component descriptions and the data dependencies between them. Control

constructs such as loops and branching are generally not included in a data flow. The

dependencies between tasks are data dependencies that ensures the data producer

has finished before the consumer may start [12]. The key advantage is that, in data

flow, more than one set of tasks can be executed at once. Tasks with no dependencies

between them may thus be safely executed in parallel. This simple principle provides

the potential for massive parallel execution at the tasks level [19].

A data flow in Stratosphere is a DAG which consists of operators, data sources,

and sinks or output of the program. The data sources and sinks, as well as the

intermediate data sets that flow through operators, are bags of records. For workflow

with iterations, a data flow construct of several operators is therefore a function,

whose fixpoint we can find by terminating the loop in the data flow DAG [14].

2.3 Related Work

There are some major existing data flow systems and workflow systems which are

interesting to mention. This section presents these different data flow and workflow

systems and discuss their characteristics, advantages, and limitations.
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2.3.1 Data Flow Systems

Many existing systems for cluster computing have been developed in the past decade

such as Hadoop MapReduce, Dryad [17], Pig [26], Hive [29] and Spark [38]. Hadoop

MapReduce and Dryad allow programmer to write low level optimized code but can

greatly reduce programmers productivity. On the other hand, Spark provides high

level operations to increase productivity but hard to gain performance by doing rela-

tional optimization [1].

Pig is a procedural data flow system for MapReduce. It offers a SQL-style high-

level data manipulation constructs, which can be assembled in any explicit data flow

and combine with custom MapReduce style functions. Pig programs are compiled

into sequences of MapReduce jobs and run on the Hadoop MapReduce environment

[15]. Pig write jobs for the Hadoop platform using a DSL called Pig Latin [26]. It is

a data flow language that provides extensive support for relational operations. Pig

Latin users need to learn a new language which is not the case with frameworks such

as Hadoop. It does not include user defined functions, the user is thus required to

define them externally in another language, which will often prevent optimizations as

Pig can not analyze those [1].

Hive, is a solution which is similar with Pig. It supports queries expressed in

a declarative language with the same feel as SQL - called HiveQL. These queries

are compiled into MapReduce jobs and subsequently executed using Hadoop [29].

Both Hive and Pig, have a very limited interface to solve a wide range of problems.

Programmers are often required to write their own functions which are not convenient

and hard to optimize [1].

Jet is a new domain specific framework which provides high level abstraction

similar to Spark and performs relational optimization as well as domain-specific op-

timizations. Its main aim is to construct the IR of program and generates optimized

code for Spark and Crunch 1 which is comparable with hand optimized implemen-

tation [1]. Jet is built upon the Lightweight Modular Staging (LMS) library [?].

LMS uses facilities provided by Virtualized Scala, an experimental version of Scala

1https://github.com/cloudera/crunch
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which provides facilities for DSLs [?], to build a modular compiler infrastructure for

developing staged DSLs.

Another existing data flow system which is developed at Microsoft is Naiad [23]. It

offers a new computational model called timely data flow whose aim is to enrich data

flow computation with timestamps that represent logical points in the computation

and provide the basis for an efficient coordination mechanism. The model is based on

a directed graph in which the nodes send and receive logically timestamped messages

along directed edges [23].

2.3.2 Workflow Systems

In recent years, a number of WMSs have emerged in the Big Data community and

they are developed to run on top of Hadoop and/or for more general purpose. Within

the Hadoop community, a WMS called Apache Oozie is developed to enable user to

combine multiple MapReduce jobs into a logical unit of work to accomplish larger

tasks or a workflow [18]. Oozie is a Java Web Application that stores the workflow

definitions and the currently running workflow instances, including their status (e.g.

running, stalled, failed) and variables (e.g. input files, output files). An Oozie work-

flow is a sequence of actions (e.g. Hadoop MapReduce jobs, Pig jobs) represented

in a control dependency DAG that is specified in the XML Process Definition Lan-

guage. The workflow consists of Control Nodes and Action Nodes. Control nodes

define the flow of execution and include start and end node of a workflow as well

as the mechanisms to control the workflow execution path e.g. decision, fork, and

join nodes whereas action Nodes are the mechanism to allow a workflow trigger the

execution of a processing task [18].

Another example of a WMS that is not built specifically for Hadoop is Luigi. Luigi

is a Python package, built in Spotify, that helps developers build complex pipelines of

batch jobs 2. It facilitates developers to combine many tasks together, where each task

may be a Hadoop job, a Hive query, loading a table from a database, etc. Similar to

Oozie, the developer need to define the tasks and their dependencies themselves. One

2https://github.com/spotify/luigi
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major difference between Luigi and Oozie is that instead of XML configuration, the

DAG in Luigi is specified with Python code constructs. This makes it easier to build

complex dependency graphs of tasks. Additionally, the workflow can trigger scripts

that are not written in Python e.g., Pig scripts 2. In Luigi, the developer defines a

job as a Python class. Luigi workers communicate with HDFS and walk through the

workflow DAG and perform data flow analysis. During the data flow analysis, Luigi

checks, for each task, whether a tasks output exists in order to determine the next

tasks to be run. After it finishes, it then runs the tasks e.g. MapReduce jobs 1.

Spark [38], as mentioned in section 2.2.1, supports generalized workflows. In con-

trast to MapReduce, where all jobs are expressed in rigid map and reduce semantics,

Spark jobs can describe arbitrary workflows with one or multiple stages of processing

3. This is enabled by advanced DAG engine feature that Spark has which supports

cyclic data flow and in-memory computing. Each Spark job creates a DAG of task

stages to be executed on the cluster [37].

3 http://www.mapr.com/products/product-overview/apache-spark
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Chapter 3

Generating Control-Flow-Enriched

Data Flow and Target Code from

User Program

As mentioned in Chapter 1, we would like to take a user program written in our

workflow DSL as an input, perform code analysis on it in order to detect control flow

and data dependencies, and output the target code for the underlying system. This

chapter presents in detail the stages of this translation process. In the process of

translating a program written in a given language into code for a given target system,

a compiler typically constructs a sequence of IR which can have a variety of forms

[21]. Syntax tree is one of the most commonly used forms of high-level IR during

syntax and semantic analysis. In this chapter, we will look in details into how we

generate, analyze and transform the syntax tree of the user program into our own IR

(the control-flow-enriched data flow) and subsequently how this IR is used to produce

code for Stratosphere. In the preliminaries (section 3.1), we present overview of the

theory around syntax trees and graph in order to equip the reader with necessary

knowledge to understand the whole translation process.
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3.1 Preliminaries

3.1.1 Syntax Directed Translation

Before going through the intermediate code generation phase of the compiler, we first

visit its preliminary phase which is the Syntax-Directed Translation phase in which

the translation of languages guided by context-free grammars is developed (for formal

explanation of context-free grammars, refer to Definition 3.1.1). The syntax analyzer

or parser uses the components produced by the lexical analyzer to create a tree-like

IR depicting the grammatical structure of the source program [21]. This translation

technique will be applied in intermediate code generation. The most general approach

to syntax-directed translation is to construct a syntax tree and to compute the values

of attributes at the node of the tree by visiting all the nodes [21]. Information

is associated with the syntax tree by attaching attributes to the grammar symbols

representing the programming construct.

Syntax-Directed Definition (SDD) is context-free grammar completed with at-

tributes and rules. Attributes are associated with grammar symbols and rules are

associated with productions. An attribute is any quantity associated with a program-

ming construct. Examples of attributes are data types of expressions, the number

of instructions in the generated code, or the location of the first instructions in the

generated code for a construct. Since we are using grammar symbols (nonterminals

and terminals - refer to Definition 3.1.1), the notion of attributes is extended from

constructs to the symbols that represent them.

A context-free grammar in itself specifies a set of terminal symbols (inputs), an-

other set of nonterminals (e.g. symbols representing syntactic context), and a set of

productions. Each of these gives way in which strings represented by one nonterminal

can be constructed from terminal symbols and strings represented by other nonter-

minals. Production consists of a head which is the nonterminals to be replaced and

a body which is the replacing string of grammar symbols.

Definition 3.1.1 (Context-Free Grammars). A context-free grammar consists of four

components as follow [21]:
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1. A set of terminal symbols. The terminals are the elementary symbols of the

language defined by the grammar.

2. A set of nonterminals. Each nonterminal represents a set of strings of termi-

nals.

3. A set of productions. Each production consists of a nonterminal, called head

or left side of the production, a arrow, and a sequence of terminals and/or

nonterminals, called the body or right side of the production.

4. One of the nonterminals is designed as the start symbol.

3.1.2 Abstract Syntax Trees

As mentioned previously, during syntax-analysis or parsing, the compiler creates

syntax-tree nodes to represent significant programming constructs (e.g. operators,

classes, control flow etc). This phase takes the list of tokens produced by the lexi-

cal analysis and arranges these in a tree-structure that reflects the structure of the

program. The purpose of the syntax analysis or parsing phase is to recombine the

tokens produced by the lexical analysis as a result of input splitting into a form that

reflects the structure of the source program. This form is typically a data structure

called the syntax tree or parse tree of the program. As the name indicates, syntax

tree is a tree structure [22]. As the analysis continues, information is added to the

node in the form of attributes associated to the node depending on the translation to

be performed [21].

During syntax-directed translation phase in the compiler, a syntax-directed trans-

lator is constructed to translate arithmetic expressions into postfix form (see Defini-

tion 3.1.2). Abstract Syntax Tree (AST) is a data structure that is most useful for

designing this syntax-directed translator. In an AST for an expression, each interior

node represents an operator whereas the children of the node represent the operand

of the operator. The difference between AST and the parse tree is that the AST

keeps the essence of the structure of the program but omits the irrelevant details [22].
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It corresponds to one or more nodes in the parse tree. In general, any programming

construct can be handled by creating an operator for the construct and treating the

semantically meaningful components of that construct as operands [21].

An AST represents an expression formed by applying the operator op to the

subexpressions represented by E1 and E2. It can be created for any construct, not

limited to expressions. Each construct is represented by a node, with children for the

semantically meaningful components of the construct. An operator in the abstract

syntax is defined for every statement construct. For constructs that begin with a key-

word, the keyword is used for the operator (e.g. operator while for while-statements).

A whole user program, for example, is one AST. Each operator inside the program is

also an AST. However, in a global view, these ASTs are just subtrees of the complete

program AST.

We define the scope of the language grammar for our thesis and it is summarized

in Table 3.1. Syntax-tree Expr is used to represent all kinds of expressions, and stmt

to represent all kinds of statements. We describe the AST representation of each

grammar as follows:

• program. Since a block is a grouping of a program, an AST for a program is

of type block.

• block. The AST for a block is simply the AST for the sequence of statements

in the block. A sequence of statements is represented as a block (or sequence

of statements) in the grammar. Blocks, with or without declarations, appear

to be just another statement construct in intermediate code.

• declaration(s). Variable declaration typically refers to type and id assignment

to a variable. Our language also supports control flow and reassignment of the

value to the variable in a variable declaration. The last returned value from a

conditionals branching or an iteration declared in a variable declaration will be

assigned back to the variable. Hence, decl → stmt. We will show an example

of this case in section 3.3.2.
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program → block
block → ′{′ decls stmts ′}′
decls → decls1 decl

→ ε
decl → type id

→ stmt
stmts → stmts1 stmt

→ ε
stmt → block

→ if (expr) stmt1
→ if (expr) stmt1 else stmt2
→ while (expr) stmt1
→ do (stmt1) expr

expr → if (expr) bool else bool
→ rel

Table 3.1: Grammar Definition

• statement(s). When a statement is a block, it has the same syntax tree as the

block (hence, stmt → block). A statement can also refer to control flow AST.

Conditionals branching can be handled by defining two operators ifelse and if

for if-statements with and without an else part, respectively. The syntax tree

node for a while-statement and a do-while statement has an operator, which we

call while and do-while, respectively and two children - the AST for the expr

and the stmt.

• expression. Expression can be an relational comparison operators (denoted as

rel here) such as less than or greater than. In our language, expression can also

contain branching in a form of if-else statement which returns a boolean value.

Definition 3.1.2 (Postfix Form). Postfix form for an expression E can be defined as

follows [21]:

1. If E is a variable or constant, then the postfix form for E is E itself.

2. If E is an expression of the form E1 op E2, where op is any binary operator,

then the postfix form for E is E ′
1 E

′
2 op where E ′

1 and E ′
2 are the postfix forms

of E1 and E2 respectively.
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3. If E is a parenthesized expression of the form (E1), then the postfix form for E

is the same as the postfix form for E1

3.1.3 Control Flow Graph

Control Flow Graph (CFG) is a form of IR which is produced during syntax-analysis

phase of the compiler. Frances E. Allen [4] defines a CFG as ”a directed graph in

which the nodes represent basic blocks and the edges represent control flow paths”.

The CFG serves as framework for static analysis of program control flow. Many code

generators partition IR instructions into basic blocks, which consist of sequences of

instructions or statements that are always executed together [21]. Basic blocks are a

straight line, single-entry code with no branching except at the end of the sequence.

Edges in a CFG represent possible flow of control from the end of one basic block

to the beginning of another. We will we refer to basic block as block for the rest of

this thesis. There may be multiple incoming or outgoing edges for each block [4].

After the intermediate code, in our case the AST, has been partitioned into blocks,

the flow of control between them can be represented by the edges. There is an edge

from block A to block B if and only if it is possible for the first statement in block B

to immediately follow the last statement in block A. We consider various input (e.g.

block statement, if-else statement, and while statement) and formulate the expected

CFG result of the partitioning the statements into blocks process as shown in Figure

3-1. We define CFG(S) as a CFG of high-level statement S. CFG(S) is a single entry

and single-exit graph with one entry node and one exit node both in the form of a

block. It is important to highlight that in the case of CFG for Block Statements, if

statements S1, S2, ..., SN appears to be sequential (no control flow), then the CGF

will consist of only one block comprising all the statements. In the first stage of

our algorithm, construction of CFG(S) is recursively defined and will be presented in

details in section 3.4.
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Figure 3-1: CFG of Various Statements

3.1.4 Data Flow Analysis

The CFG described in section 3.1.3 captures one aspect of dependencies among parts

of program [34]. Although CFG depicts the control flow of the program, the trans-

mission of information through program variables is missing from the graph. Data

flow models which are resulted from data flow analysis provide a complimentary view

to the graph, showing relations involving transmission of information [34].

In the second stage of our algorithm, we analyze the CFG to detect data depen-

23



dencies and subsequently add another type of edges which presents information on

the data dependencies between the blocks of the CFG. Data dependencies describe

the normal situation that the data which some blocks use depends on the data created

by other blocks. Data flow analysis aims to derive the information about the flow of

data along with program execution paths. In analyzing the behavior of a program,

all the possible sequences of program points (”paths”) through a CFG that the pro-

gram execution can take must be considered. From the possible program states at

each point, we extract the information we need for the particular data flow analysis

problem to be solved. The program points in the possible execution paths in a CFG

can be defined as follows [21].

• Within one basic block, the program point after a statement is the same as the

program point before the next statement.

• If there is an edge from block B1 to block B2, then the program point after the

last statement of B1 may be followed immediately by the program point before

the first statement of B2.

In [21], Execution path or path from point p1 to point pn is defined as a sequence

of points p1, p2, ..., pn such that for each i = 1, 2, ..., n− 1, either

1. pi is the point immediately preceding a statement and pi+1 is the point imme-

diately following that same statement, or

2. pi is the end of some block and pi+1 is the beginning of a successor block.

Data Flow Analysis Schema on Basic Blocks

A data flow value at a program point represents the set of all possible program states

that can be observed for that point, for example, all definitions in the program that

can reach that point [21]. We denote the data flow values immediately before and

immediately after each basic block B in a CFG of a program by IN[B] and OUT[B],

respectively. A transfer function fB relates the data flow values before and after a

block B. Transfer functions can be either the information that propagate forward
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along the execution paths, or the information that flow backwards up the execution

paths. The data flow problem for a CFG is to compute the values of IN[B] and

OUT[B] for all blocks B in the CFG [21].

Suppose a block B contains a sequence of statements s1, ..., sn. If s1 is the first

statement of the block B, then IN[B] = IN[s1]. Similarly, if sn is the last statement of

block B, then OUT[B] = OUT[sn]. The transfer function of a block B, denoted by fB

is derived by composing the transfer functions of the statements in the block. That

is, let fsi be the transfer function of statement si. Then fB = fsn ◦... ◦fs2 ◦fs1 . [21]

defines the relationship between the beginning and the end of the block as follow:

OUT [B] = fB(IN [B])

Given a CFG, in a forward data flow problem the IN set of a block B is computed

from the OUT sets of B’s predecessors.

IN [B] = ∪P a predecessor of B OUT [P ]

Vice versa, a backward data flow problem occurs when the IN set of a block B is

computed from the OUT set of B’s successors. When the data flow is backwards,

which we will see in detail in section 3.1.4, the equations are similar, but the roles of

IN and OUT are reversed such that:

IN [B] = fB(OUT [B])

OUT [B] = ∪S a successor of B IN [S]

Live Variable Analysis

The purpose of live variable analysis is to know for a variable x and point p whether

the value of x at p could be used along some path in CFG starting at p. If so, then x

is said to be live at p; otherwise, x is dead at p. The basic motivation of live variable

analysis is to manage register allocation. A program contains an unbounded number

of variables and must be executed on a machine with bounded number of registers.

Two variables can use the same register if they are never in use at the same time (i.e.

never simultaneously live). The result of this live variable analysis is used to enrich

our CFG with the data dependencies information. In our case, this can lead to a
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optimization potential such as parallelization of some tasks if they do not share a live

variable between them. Live-variable analysis is an example of a backward data flow

problem [21].

In a data flow model, the point in a program where a value is produced (called a

”definition”) is associated with the points at which the value may be accessed (called

a ”use”) [34]. Associations of definitions and uses fundamentally capture the flow

of information through a program, from input to output. Definitions occur where

variables are declared or initialized, assigned values, or received as parameters, and

in general at all statements that change the value of one or more variables. Uses occur

in expressions, conditional statements, parameter passing, return statements, and in

general in all statements whose execution extracts a value from a variable [34].

[21] define the data flow equations in terms of IN[B] and OUT[B], which rep-

resent the set of variables live at the points immediately before and after block B,

respectively, as follows:

• Let defB be the set of variables defined (i.e. assigned values) in block B prior

to any use of that variable in B, and

• Let useB be the set of variables whose values may be used in B prior to any

definition of the variable.

These definitions lead to any variable in useB considered live when entering block B,

whereas definitions of variables in defB are dead at the beginning of B. We associate

the use and def to the unknowns IN and OUT problem. No variables are live on exit

on the program [21]. Hence,

IN [EXIT ] = ∅.

A variable is defined live when entering a block if either it is used before redefinition

in the block or it is live coming out of the block and is not redefined inside the block.

A variable is coming out of the block if and only if it is live when entering one of

its successors. These two definitions can be summarized into the following equations

[21].

IN [B] = useB ∪ (OUT [B]− defB)
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OUT [B] = ∪S a successor of B IN [S]

Information flow for liveness is directed backward, opposite to the direction of control

flow since, in this problem, we aim to make sure that the use of variable x at point p

is transmitted to all points prior to p in an execution path. Thus, we may know at

the prior point that x will have its value used in the later points. To solve a backward

problem, IN[EXIT] is initialized instead of OUT[ENTRY]. The solution to liveness

equation is not necessarily unique and the aim is to find a solution with the smallest

sets of live variables [21].

3.2 Translating ASTs to CFGs

We start describing the application of the theory that are introduced in the previous

sections to our thesis. As described in Chapter 1, we divide the problem of translat-

ing the source program to target code into three stages. The first stage is to traverse

the given AST and transform it to a another type of IR which is CFG; the steps are

depicted in Figure 3-2. This thesis covers the design of the algorithm and implemen-

tation to transform the AST into CFG. A sample Scala program with control flow

(refer to Listing 3.3 and iteration is presented in this chapter to show the process and

result of our algorithm and implementation. The second stage is to analyze the CFG

and identify the data dependencies between each block of the graph. In the end, we

generate the executable code for the underlying system. The driver program of the

WMS will then execute this target code. The design of the algorithm and expected

result of the last two stages are also delivered in this thesis and are presented in

section 3.5 and 3.6, respectively.

Figure 3-2: Intermediate Representations
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3.3 Scala AST

In this thesis, we do not create our own syntax trees representation but reuse the

Scala Abstract Syntax Trees (AST) given freely by the Scala compiler’s parser and

type checker [28]. This section gives necessary introduction to Scala AST to allow

the reader to understand the transformation process from the source language to the

target language. As described in section 3.1.2, AST is one of the most important

forms of IR. The Scala compiler’s parser and type checker provide the Scala AST as

IR that we can directly work on. Additionally, the Scala compiler also provides a tool

to traverse and transform an AST [28].

The Scala ASTs are the basis of abstract syntax which is used to represent pro-

grams. The Scala compiler uses ASTs as an IR before generating bytecode [13]. In

Scala reflection, AST can be produced or used by the following APIs1:

• Scala annotations. This API uses the AST to represent their arguments and is

exposed in Annotation.scalaArgs.

• reify. This special method takes an expression as a parameter and returns an

AST that represent this expression.

• Compile time reflection with macros [8] and runtime compilation with toolboxes

use trees as their program representation medium. Macros expand trees at

compile time allowing programmers to hack and manipulate AST within the

compilation scope [8]. One of the reasons to perform this at compile time and

not on runtime is to avoid runtime overhead.

3.3.1 Scala Macros

Compile time metaprogramming is the algorithmic construction of programs at compile-

time. Scala macros is an experimental facility to allow user to perform compile-time

metaprogramming [9]. With this feature, compiler is enabled to recognize certain

methods in Scala programs as metaprograms, or macros, which can be invoked at

1http://lang.org/overviews/reflection/symbols-trees-types.html
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certain points. When invoked, macros expose a compiler context which includes the

compiler’s representation of the program being compiled along with an API that pro-

vides certain compiler functionality such as parsing and typechecking. Using these

API, macros is able to affect compilation e.g. by changing the code being compiled

[8].

Defmacros, plain methods whose invocations are expanded during compilation,

is the most basic form of compile-time metaprogramming and the one that we work

with for this thesis. In the eye of the programmer, def macros appear to look like

regular Scala methods with a special property-when a method in a Scala method

satisfies this property, that macros definition is expanded by invoking a corresponding

metaprogram, called the macro implementation. The only fundamental difference

with regular method is that macros are resolved at compile time [8]. Def macros offers

the programmer the ability to work on the AST representation of the parameters given

to the method. The programmer then can inspect, manipulate or completely rewrite

the AST, which is compiled by the Scala compiler after the method finishes.

An example of def macro implementation for printf function is depicted in Listing

3.1 below.

def printf(format: String , params: Any*): Unit = macro impl

def impl(c: Context)(format: c.Expr[String], params: c.Expr[Any]*): c.Expr[Unit] =

...

printf("Hello %s", "world")

Listing 3.1: Macros Printf Function [8]

3.3.2 AST Classes

This section introduces some of the concrete trees classes that are used in traversing

the trees in our implementation. All concrete classes are case classes, and similar to

other classes, their parameters are listed following the class name as follows [28]:

• Block(stats: List[Tree], expr: Tree).

A Block consists of a list of statements and returns the value of expr. As the

name indicates, this class represents block in our language grammar.
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• ValDef(mods: Modifiers, name: Name, tpt: Tree, rhs: Tree).

Value definitions are all definitions of immutable variables val, mutable variable

var (identified by the MUTABLE flag), and parameters (identified by the param

flag). In Scala, apart from value definitions, ValDef can also contain If statement

as also defined in our language grammar.

• Assign(lhs: Tree, rhs: Tree).

Assign trees are used for non-initial assignments to variables. The lhs typi-

cally consists of an id (Ident(name)) and is assigned the value of the rhs which

normally contains an application (Apply) of a function.

• If(cond: Tree, thenp: Tree, elsep: Tree).

An If statement consists of three parts: the condition, the then part and the

else part. If the else part is omitted, the literal () of type Unit is generated and

the type of the conditional is set to an upper bound of Unit and the type of the

then expression, usually Any. As the name indicates, this class represents the

If statement in the language grammar.

• LabelDef(name: Name, params: List[Ident], rhs: Tree).

The LabelDef class in Scala represents the while and do-while statement in our

language grammar. The Scala language specification [25] defines that the while

loop statement while(e1) e2 is typed and evaluated as if it is an application

of whileLoop(e1)(e2) where the hypothetical function whileLoop is defined

in Listing 3.2.

def whileLoop(cond: => Boolean)(body: => Unit): Unit = if (cond) { body ;

whileLoop(cond)(body) } else {}

Listing 3.2: WhileLoop Function

3.3.3 Generating Scala AST

Scala macros is used in this thesis to provide us the AST representation of the method

arguments the macro expansion is applied to, which in this case is our workflow pro-
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gram. In this section, we present a sample program with iteration and an If statement

inside the iteration written in our language (refer to Listing 1.2) and show the gen-

erated Scala AST of the program.

val e1 = DataSource("/tmp/input1.txt", CsvInputFormat [(String , Int , Int)]())

.filter(x => x._1 == "Joshua")

val e2 = DataSource("/tmp/input2.txt", CsvInputFormat [(String , Int , Int)]())

.filter(x => x._1 == "Marten")

var e3: DataSet [(String , Int , Int)] = null

var i = 0

while(i < 0) {

if (e1.map(x => x._2).reduce ((x, y) => Math.max(x, y)).fetch().head > 50)

e3 = e1.map { x => (x._1, x._2 + 1000, x._3)}

else

e3 = e2.map { x => (x._1, x._2 + 1500, x._3)}

i = i + 1

}

val e4 = e3.write("/tmp/output.txt", CsvOutputFormat [(String , Int , Int)]())

e4

Listing 3.3: Workflow with Conditional

As shown in Scala AST in Figure 3-3, the program is represented by a block which

consists of list of statements and an expression which holds the final return value.

Each of the variable definition is presented by a ValDef. The LabelDef in the AST

represents the while statement in the program and consists of a name and a rhs of

type If. The If statement consists of the three parts: the condition, the then part,

and the else part. In the LabelDef case, the else part, which is of type Literal only

contains an empty constant value, whereas the then part is expanded to another list

of statements and expression. Given that in the sample program, there is a control

flow inside the body of the loop, the statement then consists of another If statement.

The then and else part of this If statement are of type Assign since in the program,

we assign a map function in the rhs to a variable name in the lhs.
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Figure 3-3: Scala AST of Program in Listing 3.3
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3.4 Create CFG from AST Algorithm

Creating CFG from AST is the first stage of the intermediate code and code generation

process. This algorithm takes as an input a Scala AST and produces the output of

a IR in a form of CFG. Here, we formally define CFG as G = (V,E) with set V of

vertices and a set E of directed edges. Each vertex V is a sequence of one or multiple

nodes n in the AST. The idea of the algorithm is to traverse the tree from top to

bottom starting from the root and to visit each node n of the children recursively.

We check the AST type of each node n and perform a set of actions accordingly. The

procedure createCFG(nCurr,G, vCurr,X) takes as input the following parameters.

• nCurr refers to the node that is currently being visited in the AST. In the

beginning, nCurr is initialized to root of the complete AST of the program.

Since we traverse the tree from top to bottom, the nCurr becomes the root of

the subtree of the initial root node. Depending on the type of the AST, the

nCurr is either pushed to the current Vertex vCurr or the subtree of the nCurr

is visited recursively.

• G = (V,E) refers to the CFG produced by the procedure and is continuously

being updated whenever recursion takes place. Each vertex of the resulted CFG

contains a sequence of statements in the AST that can be executed in a sequence

(no control flow). In the CFG theory in section 3.1.3, each vertex represents

a basic block. The vertices set V of the graph has initial member of vCurr,

whereas the edges set E is initialized to an empty set.

• vCurr refers to the vertex of the CFG that is currently being built. If the

nCurr, which may be a subtree, does not contain control flow or branches,

the nCurr will be pushed to the vCurr. Subsequently, if the nCurr contains

branches or control flow, new vertex will be added to the CFG as well as directed

edges from the vCurr to the new vertex. Furthermore, the new vertex will

become the new vCurr and the whole procedure of checking nCurr for control

flow is repeated. In the initialization, vCurr is set to empty sequence since we
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just begin to traverse the tree.

• X is a stack to store variables which contain branches and needs to be updated

with the return value of either the then part or the else part of the control flow.

In our language grammar, this kind of variables refer to a declaration containing

an if statement. In the algorithm, this variable will be reassigned to the return

value and will be deleted from the stack and the stack will be empty when the

procedure finishes.

Algorithm 1 Creating Control Flow Diagram from AST Part 1

1: Initialize:

vcurr ← [], V ← {vcurr}, E ← ∅, X ← [], ncurr ← root

2: procedure createCFG(ncurr, G, vcurr, X)

3: match ncurr

4: case Block(stats, expr)

5: for each s in stats

6: (G, vcurr, X)← createCFG(s,G, vcurr, ∅)

7: (G, vcurr, X)← createCFG(expr,G, vcurr, X)

8: return (G, vcurr, X)

9: case V alDef(name, rhs)

10: if containsBranches(rhs)

11: push(V alDef(name, ∅), vcurr)

12: push(name,X)

13: (G, vcurr, X)← createCFG(rhs,G, vcurr, X)

14: else

15: push(ncurr, vcurr)

16: return (G, vcurr, X)
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Algorithm 1 Creating Control Flow Diagram from AST Part 2

17: case Assign(name, rhs)

18: if containsBranches(rhs)

19: push(name,X)

20: (G, vcurr, X)← createCFG(rhs,G, vcurr, X)

21: else

22: push(ncurr, vcurr)

23: return (G, vcurr, X)

24: case While(cond, body)

25: vcondStart ← newV()

26: V ← V ∪ {vcondStart};E ← E ∪ {(vcurr, vcondStart)}

27: (G, vcondEnd, X)← createCFG(cond,G, vcondStart, ∅)

28: vbodyStart ← newV()

29: V ← V ∪ {vbodyStart};E ← E ∪ {(vcondEnd, vbodyStart)}

30: (G, vbodyEnd, X)← createCFG(body,G, vbodyStart, ∅)

31: vcurr ← newV()

32: V ← V ∪ {vcurr};E ← E ∪ {(vcondEnd, vcurr), (vbodyEnd, vcondStart)}

33: return (G, vcurr, X)

34: case DoWhile(cond, body)

35: vbodyStart ← newV()

36: V ← V ∪ {vbodyStart};E ← E ∪ {(vcurr, vbodyStart)}

37: (G, vbodyEnd, X)← createCFG(body,G, vbody, ∅)

38: vcondStart ← newV()

39: V ← V ∪ {vbodyEnd, vcondStart};E ← E ∪ {(vbodyEnd, vcondStart)}

40: (G, vcondEnd, X)← createCFG(cond,G, vcond, ∅)

41: vcurr ← newV()

42: V ← V ∪ {vcurr, vcondEnd}

43: E ← E ∪ {(vcondEnd, vcurr), (vcondEnd, vbodyStart)}

44: return (G, vcurr, X)
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Algorithm 1 Creating Control Flow Diagram from AST Part 3

45: case If(cond, thenp, elsep)

46: (G, vcond, X)← createCFG(cond,G, vcond, ∅)

47: vthenp ← newV()

48: V ← V ∪ {vthenp;E ← E ∪ {(vcurr, vthenp)}

49: (G, vthenp, X)← createCFG(thenp,G, vthenp, X)

50: velsep ← newV()

51: V ← V ∪ {velsep};E ← E ∪ {(vcurr, velsep)

52: (G, velsep, X)← createCFG(elsep,G, velsep, X)

53: vcurr ← newV()

54: V ← V ∪ {vcurr};E ← E ∪ {(vthenp, vcurr), (velsep, vcurr)}

55: return (G, vcurr, X)

56: case

57: if X 6= ∅

58: name← X.head

59: push(Assign(name, ncurr), vcurr)

60: else

61: push(ncurr, vcurr)

62: return (G, vcurr, X)

63: end procedure

64: procedure containsBranches(ncurr)

65: match ncurr

66: case Block(,expr)

67: containsBranches(expr)

68: case If( )

69: return true

70: case

71: return false

72: end procedure
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Using Scala pattern matching, we are able to traverse the tree and match the

current node of the tree nCurr to a Scala AST type. Based on its type, the following

procedure will be taken.

• Block(stats, expr). A Block typically consists of a list of statements and an

expression. For every statement inside the Block, the procedure is called recur-

sively and the Graph G = (V,E), current vertex vCurr, and stack of variable

X are subsequently updated. After each statement is visited, the procedure is

also called recursively for the single expression.

• V alDef(name, rhs). As mentioned in the section 3.3, ValDef refers to defini-

tion of a variable both immutable (val) and mutable (var). In this case, we

check whether the ValDef contains conditionals branching or control flow. If

there is a control flow inside the ValDef, the same ValDef with a mutable iden-

tifier is pushed to the current vertex vCurr and the name of the variable of

type TermName is stored in the stack variable X. The name of the variable

needs to be stored because it must be assigned later with the value returned

by the then part or the else part of the control flow. The rhs then becomes the

current node nCurr and the procedure is called recursively. A sample program

that will encounter this case is depicted in the Listing 3.4 below. In this case,

the variable e3 is stored in X and later will be assigned to the function ”e1.map

..” or function ”e2.map ..”.

val e3 = if (e1.map(x => x._2).reduce ((x, y) => Math.max(x, y)).fetch().head >

50)

e1.map { x => (x._1 , x._2 + 1000, x._3)}

else

e2.map { x => (x._1 , x._2 + 1500, x._3)}

Listing 3.4: ValDef with Branches

If the ValDef does not contain branching, then the current node nCurr is di-

rectly pushed to the current vertex vCurr.
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• Assign(name, rhs). The procedure for the case Assign is similar with ValDef.

We check whether the current node nCurr or subtree contains conditionals

branching. If so, the name of the variable is stored in the stack variable X to

be assigned later with the value retuned by the then part or the else part of

the control flow. The procedure is then called recursively with the rhs as the

new current node nCurr. Similar to ValDef, if the subtree does not contain

branching, the current node nCurr is directly pushed to the current vertex

vCurr.

• While(cond, body). In the case of while statement, as depicted in CFG expected

result (Figure 3-1), a new vertex vCondStart is created to store the condition

of the while loop or iteration. A directed edge is defined from the current ver-

tex vCurr to the new vertex vCondStart. A new vertex vBodyStart is also

created to store the statements in the body of the iteration. Both the cond and

body may or may not contain branching. Hence, recursive call both for cond

and body need to take place which results in the new vertex vCondEnd and

vBodyEnd respectively. A directed edge is defined from the end of the body

which is the vertex vBodyEnd to the beginning of the cond which is the vertex

vCondStart. At the end, a new vertex is created as the new current vertex

vCurr and a directed edge is defined from the vertex vBodyEnd to the new

current vertex vCurr.

• DoWhile(cond, body). The procedure for do while case is similar with while

case with the differences in the order the vertices are created as well as the

placement of directed edges connecting the vertices. The vBodyStart is created

first and is connected to the vCurr. The vertex result of the recursive call to

the body of the iteration, which is vertex vBodyEnd is connected to the new

vertex vCondStart which stores the condition of the iteration. The end of the

condition vCondEnd is then connected to the start of the body vBodyStart.

Similar to the case of while loop, at the end, a new vertex is created as the new
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current vertex vCurr and a directed edge is defined from the vertex vCondEnd

to the new current vertex vCurr.

• If(cond, thenp, elsep). At first, we create a new vertex vCond to store the

condition of the If statement. A directed edge is connected from the current

vertex vCurr to the vCond. A recursive call is performed to the procedure

since the cond may or may not contain branching. We then create two new

vertices vThenp and vElsep to represent the then part and the else part of

the If statement, respectively. A directed edge is defined from vCond to both

new vertices vThenp and vElsep to represent all possible flows. Recursive call

is performed both for the then part thenp and else part elsep since they may

or may not contain branching. At the end, a new vertex is created as the

new current vertex vCurr and a directed edge is defined both from the vertex

vThenp and vertex vElsep to the new current vertex vCurr.

• DefaultCase). We first check whether the stack of variable X contains any

member. If so, we retrieve the last member inserted to X which is a name

of variable (of type TermName in Scala AST), and assign the current node

nCurr to the name. This assignment is then pushed to the current vertex

vCurr. If the stack variable X does not contain any member, which means no

value reassignment is required, the current node nCurr is directly pushed to

the current vertex vCurr.

We perform this algorithm with the input of the Scala AST of the program in

Listing 3.3. The CFG result is shown in Figure 1.4.

3.5 Generate Control-Flow-Enriched Data Flow

As described in section 3.1.4, the CFG produced from the first stage of algorithm

not yet depicts the transmission of information through program variables. Hence,

in this stage of algorithm, we perform data flow analysis on the CFG with the aim

to compliment the existing CFG with the information on the flow of data between
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Figure 3-4: CFG of Scala AST of sample Program

vertices of the CFG. The flow of data is designed as another type of directed edge in

the CFG which contains information of the variable that is shared from one vertex

to another.

3.5.1 Generate Def-Use Pair

In order to compliment the CFG with the data flow edges, the first step that we need

to perform is to compute the set of variables defined and the set of variables used in

each vertex of the CFG, which is denoted by defB and useB, respectively (refer to
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the theory in section 3.1.4). Each vertex in the CFG represents the block that we

witness in the theory - we use the term vertex instead of block in this section.

Furthermore, we would like to associate the vertex of the graph to the variable

in the program that it defines or uses. Let the vertex be B and each variable in the

program be v. Then the association between the vertex and variable of the program

can be defined as follows:

def(B,v) holds, for a variable v and a vextex B, if B defines v

use(B,v) holds, for a variable v and a vextex B, if B uses the value of v

Using these definitions, we generate the Def-Use pair information for each of the

vertex in G(V,E) of the sample program in Listing 3.3 resulted from the first stage

of the algorithm. The complimented CFG with the Def-Use pair for each vertex is

depicted in Figure 3-5.

3.5.2 Adding Data Flow to the CFG

This subsection is the true essence of our second stage of the algorithm which is to

produce a control-flow-enriched data flow by adding another type of directed edges

that depicts the information flow of variables in the program. After we compute the

Def-Use pair of each vertex in the CFG, we need to traverse the graph once again

to enrich the CFG with another type of edge which is the data flow edge. The data

flow edge is a directed edge depicting the flow of information on program variables

between graph vertices.

The flow of information is derived from the Def-Use pair that we already computed

for each vertex. The technique we deploy is by comparing two different vertices and

checking whether one vertex B1 defines a variable v that the other vertex B2 uses. If

so, then we draw a directed edge from vertex B1 to vertex B2 that depicts the data

flow of variable v given that def(B1,v) reaches use(B2,v). This last property is related

to the definition of clear path problem which can be described as follow:

def(B1,v) reaches use(B2,v) when there is a definition clear path from B1 to B2

A Def-Use pair is formed only if there is a program path on which the value
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Figure 3-5: CFG with Def-Use Pair Information of Program in Listing 3.3

assigned in the definition can reach the point of use without being overwritten by

another value. If there is another assignment to the same variable along the path,

we say that the first definition is killed by the second. A definition-clear path is a

path from definition to use on which the definition is not killed by another definition

of the same variable [34]. Hence, the steps to enrich the CFG resulted from previous

stage is summarized in the following Algorithm.
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Algorithm 2 Adding Data Flow to Control Flow Diagram

Input: G(V,E) with Def − Use Pair for each vertex

Output: G(V,E,DFE)

1: Initialize:

DFE ← ∅

2: procedure createCFDFG(G)

3: for each vertex B1 in G

4: for each vertex B2 in G other than B1

5: for each variable v in defB1

6: if There exists use(B2, v) and def(B1, v) reaches use(B2, v)

7: DFE ← DFE ∪ {(B1, B2, v)}

8: return G

9: end procedure

The input of our algorithm is CFG G(V,E) with set of vertices V and a set of

directed edges E as well as computed Def-Use pair for each vertex. The expected

output of our algorithm is control-flow-enriched data flow G(V,E,DFE) with DFE

referring to a set of typed-directed edges that depicts the information flow of a variable

from one vertex to another. The result of data flow analysis performed on CFG

produced with sample program in Listing 3.3 is depicted in Figure 3-6 below.

3.6 Generate Code for Underlying System

As a result of the previous two algorithms, we have now an IR of the program in

the form of a control-flow-enriched data flow graph. The final phase in our compiler

model is the code generator. Code generator takes as input the IR produced by the

previous stage of the algorithm, and produces as output a semantically equivalent

target program for the underlying system.
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Figure 3-6: Control-Flow-Enriched Data Flow of Program in Listing 3.3

3.6.1 Assumptions

We assume that all syntactic and static semantic errors have been detected and that

the necessary type-checking has taken place, and that type-conversion operators have

been inserted wherever necessary [21]. The code generator can therefore proceed on

the assumption that its input is free of these sorts of errors.

Since we only implement the translation to Stratosphere for now, it is also assumed

that the code generated by this algorithm will run only for systems with a specified

set of primitives that are currently supported by Stratosphere e.g. map, reduce, join.
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That said, it is generally possible to generate the code for any execution framework

which is based on working with collections or data sets by providing the functional

for that.

3.6.2 Code Generation Algorithm

Each vertex in the graph of our IR represents a basic block which consists of sequences

of statements that are always executed together. The objective of this stage is to

transform this vertex or block to a Stratosphere job so that in the end of this stage,

we have a number of Stratosphere jobs to be run in the WMS with an order according

to the dependencies defined in the IR. For each of this Stratosphere job, we will

add the necessary environment declarations to enable a driver program in the WMS

to execute each job in the underlying infrastructure. The WMS will automatically

select which job to be run out of the many Stratosphere jobs since the flow of the

execution is already determined by the control flow edge and data flow edge of the IR.

The following Figure 3-7 depicts the role of workflow manager inside the underlying

system.

Figure 3-7: Workflow Manager in Underlying System
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With regards to the data dependencies, as mentioned in section 3.5, each edge of

type data flow is a directed edge which contains the information of the source vertex

B1, destination vertex B2 and the data or variable that they are moving v. Each

incoming edge to a vertex B shows that the Stratosphere job that represents the

vertex B requires the input of the data or variable contained in the data flow edge.

Simultaneously, each outgoing edge from a vertex B shows that the Stratosphere job

that represents the vertex B need to output or sink the data or variable contained in

the data flow edge to the disk so that other jobs in the workflow can get the data if

they use it.

With respect to the output of this algorithm, we denote the sequence of Strato-

sphere job as J . J is a sequence of Stratosphere jobs denoted by j(I, O) with data

source set I consisting of all input variables to the job and data sink set O consist-

ing of all output variables from the job. The input of this final stage is denoted by

G(V,E,DFE) as a result of the previous stage of the algorithm. The idea of the

algorithm is to traverse the graph and visit each vertex B of the graph. For each

vertex B, we will add the required input and output variables v to the data source

set I and data sink set O of the job, respectively. At the end, we will need to add a

suffix to the job to execute it.

The algorithm to create the job scripts for the underlying system is summarized

in the Algorithm 3 as follows.
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Algorithm 3 Generate Code for Underlying System

Input: Intermediate Representation G(V,E,DFE)

Output: Sequence of Stratosphere Jobs J

1: Initialize:

J ← ∅

2: procedure createJob(G)

3: for each vertex B in G

4: I ← ∅

5: O ← ∅

6: for each variable v in DFE( , B, v)

7: I ← I ∪ {v}

8: for each variable v in DFE(B, , v)

9: O ← O ∪ {v}

10: J ← J ∪ {j(I, O)}

11: return J

12: end procedure
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Chapter 4

Evaluation

This chapter addresses the competitive advantages of our workflow DSL. In section

4.1, we select a sample use case for a large-scale data processing. In order to justify

that our language increases programmer productivity, we show how to define the

workflow in our DSL versus how it is defined in Oozie, the existing workflow system

that we explained briefly in section 2.3.2. Section 4.2 discusses the advantages of

our workflow language in terms of generality. We argue that our workflow DSL is

extensible to various underlying systems.

4.1 Productivity

We argue that our high-level functional DSL increases productivity. We show this by

selecting a good reference of use case, a vehicle GPS probe data ingestion, which has

been implemented in Oozie workflow by B. Lublinsky and M. Segel 1.

Use Case: Ingestion Process

Data ingestion is the process of obtaining, importing, and processing data for later

use or storage in a database. This process often involves altering and validating

individual files 2. The Probes data is delivered to a specific HDFS directory every

1http://www.infoq.com/articles/oozieexample
2http://whatis.techtarget.com/definition/data-ingestion
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hour in a form of a file which contains all probes for that particular hour. In this

example, the name of the directory is the date for which the data is collected. Probes

ingestion is done daily for all 24 files for that day. The ingestion process will only

start if the amount of files is 24. Otherwise, the following actions will be taken.

• If it is the current day, no action will be taken.

• If it is up to seven days prior to current day, then send a reminder to the probes

data provide.

• If the age of directory is seven days or more, ingest all available probes files

even though the amount is less than 24.

The overall workflow of the use case is depicted in Figure 4-1.

Figure 4-1: Ingestion Process and Directory Subprocess 1
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The ingestion process, which is the main process, first calculates the directories

names for current day and the six previous days. Then, the seven directory sub-

processes are started. The subprocess starts by retrieving information about the

directory - its age and the amount of files inside it. It then takes one of the three

actions described previously (ingest and archive data, send reminder e-mail, or do

nothing) based on the age and amount of files information. In the following subsec-

tions, we define and describe the implementation of this process in Oozie workflow

and our workflow DSL. Based on this implementation, we later compare and show

that our workflow specification is more intuitive and increase the productivity of the

programming with way less lines of code to write for the same process.

4.1.1 Oozie Implementation

In Oozie workflow, this implementation is divided into two, the main ingestion pro-

cess and the subprocess of directory information collection. The programmer need

to specify two XML definitions, for the main process and the subprocess, each con-

taining the action nodes and decision nodes based on the overall workflow. Oozie

implementation of main ingestion process can be found in Appendix B while the im-

plementation of the subprocess is listed in Appendix C. The main process is pretty

straightforward - in the beginning, there is an action node that invokes a java node

to calculate a list of directories to process and later starts seven action nodes, each

containing a subprocess for each directory in the list. This implementation forces the

programmer to write approximately 93 lines of XML code. The input and output

directory of each subprocess is also defined manually in the XML definition.

The subprocess in each directory is more complex than the main one. The first

action node gets the directory information and also invokes a java routine that we

ignore in this evaluation. The next step in the subprocess is a decision node, which

decides the action to be performed for the directory. If the directory does not exist or

if it is the directory of current day and number of files is less than 24, subprocess will

end. If all the files are in the subdirectory or directory is at least 7 days old or more,

the subprocess will go to ingest action node which contains a Map/Reduce program to
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ingest the data and continue to go to action node archive data. This implementation

of the subprocess requires the programmer to write approximately 98 lines of XML

code giving the total 191 lines of code to implement the overall workflow.

4.1.2 Workflow DSL Implementation

We implement and test the same use case using our workflow DSL. Using our work-

flow DSL increases the productivity of the programmer since the programmer only

need to specify one workflow definition that contains both the main process and sub-

process. The implementation of our DSL for this use case can be found in Listing

4.1. Functional programming provides an intuitive way for the programmer to code

the process. For example, the fork node in the main process which starts the subpro-

cess for each directory in the list can be replaced by a general while style iteration

over the list of directories. The body of the iteration would be the subprocess itself

which contains the conditionals branching based on the directory information (age

and number of files). This workflow consists of approximately 24 lines of codes, far

less codes than its Oozie implementation.

var temp = new Directories ()

var dirList = temp.get

var i: Int = 0

while (i < temp.getSize)

{

var dir = new DirInfo(dirList(i))

var dirAge = dir.getAge

var dirSize = dir.getSize

if(if(dirAge < 1) dirSize > 23 else dirSize > 0)

{

if(dirAge > 6 || dirSize > 23)

{

var ingest = ingestFile(dir.getName)

var archive = archiveFile(dir.getName)

}

else

{

var reminder = sendReminder(dir.getName)

}
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}

i = i+1

}

Listing 4.1: Use Case Implementation in Workflow DSL

The comparison of productivity in terms of lines of code between the implemen-

tation of this workflow in Oozie and in our DSL is summarized in Table 4.1 below.

Oozie Our DSL

191 24

Table 4.1: Productivity Comparison between Oozie and Our DSL

4.2 Generality

Our workflow DSL provides a high-level declarative interface which adheres only for

Stratosphere at the moment. It is deeply embedded with Scala functional program-

ming language - it has the same syntax and semantics as the stardard Scala program-

ming language with some restrictions. We define the restrictions in our workflow DSL

grammar in the previous chapter. Other domain specific approach for data flow such

as Pig [26] and Hive [29] allows productivity but their programming model is often

too specific and place a high overload for the programmer of learning new language.

Independence of underlying system is also one of the key advantages of our work-

flow DSL. Even though our workflow DSL is designed to be run on top of Stratosphere,

it is also possible to compile a program written in our DSL to other underlying plat-

forms such as Spark and Hadoop MapReduce. The program written in our DSL is

analyzed to produce the IR in a form of control-flow enriched data flow. This IR is

subsequently transformed into job scripts with properties (e.g. environment variables,

execution plan) required by the underlying system that the workflow is intended to

run on.

Spark, for example, can understand the general-style if statement and while state-
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ment that our DSL grammar support. Spark normally uses For-comprehension for

iteration in its programming syntax but we can easily accommodate this to while-

statement in our grammar. We show one example of a machine learning algorithm

Logistic Regression implemented in Spark 3 in Listing 4.2.

val data = spark.hdfsTextFile (...).map(readPoint).cache ()

var w = Vector.random(D)

for (i <- 1 to ITERATIONS) {

var gradient = spark.accumulator(Vector.zeros(D))

data.foreach(p => {

val scale = (1/(1+ exp(-p.y*(w dot p.x))) - 1) * p.y

gradient += scale * p.x

})

w -= gradient.value

}

println("Final w: " + w)

Listing 4.2: Logistic Regression in Spark

We show that we are able to accommodate this into our workflow DSL with limited

changes. The logistic regression algorithm implemented in our workflow DSL is shown

in Listing 1. Since For-Comprehension is not yet supported, we modify the iteration

implementation into a general while-statement.

val data = spark.hdfsTextFile (...).map(readPoint).cache ()

var w = Vector.random(D)

while(i < ITERATIONS) {

w -= data.map(p => {

val scale = (1/(1+ exp(-p.y*(w dot p.x))) - 1) * p.y

scale * p.x

}).reduce(_+_)

i = i + 1

}

println("Final w: " + w)

Listing 4.3: Logistic Regression in Our DSL

3 http://laser.inf.ethz.ch/2013/material/joseph/LASER-Joseph-6.pdf
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Chapter 5

Conclusion

This research is set out to help achieve an important goal that is to build a WMS on

top of Stratosphere to support more and more complex large-scale data processing

processes. We define a workflow DSL to enable the programmer to easily implement

their algorithm without having to manually specify the dependencies e.g. control

and data dependencies between tasks in the workflow. The workflow DSL is deeply

embedded in Scala high-level programming language, thus avoids overhead for the

programmer to learn completely new syntax to write their program. The main con-

tribution of this research is generating a control-flow-enriched data flow and target

code from user program via static analysis of the program code. Using Scala macros,

an experimental Scala library which expands the Scala AST of the program at com-

pile time, we are able to manipulate the AST of the program to generate the IR that

is required in this process. We establish an algorithm for each of the three stages of

the translation process as follows: (1) create CFG from AST, (2) adding data flow to

the CFG, and (3) generate code for the underlying system. The full implementation

of the first stage of the overall process is also covered in this thesis.

To evaluate, we compare our workflow DSL to another existing workflow system

for large-scale data processing framework, Oozie workflow system for Hadoop by

implementing a complex use case on both systems. It is shown that our workflow

DSL is able to increase productivity with far less lines of codes produced compared

to the implementation of the same use case in Oozie. Unlike the case with Oozie, our
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workflow DSL does not require the programmer to write manually the dependencies

between tasks since our compiler frawework will detect these control flow and data

dependencies with the technique described previously, thus making the programmer

job easier. Another advantage of our workflow DSL is its extensibility to be run on

top of other framework such as Spark.

We can always improve our workflow DSL by extending it to also include more

grammar definition, for instance, adding a for-comprehension which is currently sup-

ported in Spark to our grammar. Another limitation is that our workflow DSL is

currently only designed to run on top of Stratosphere. However, in general it is pos-

sible to generate the code or job scripts of the workflow for any execution framework

as long as we provide the mapping of the Stratosphere primitives to the target sys-

tem which will be an important future work. For example, it will be a challenge

to map a join operator, which is supported by Stratosphere, to Hadoop MapReduce

framework which does not provide the join operator. In a more global view, future

direction should include the ability to run a program written in our workflow DSL on

multiple platforms. For example, a user may want to use Spark streaming for some

data analysis and then send the result to Stratosphere to perform a delta iteration.

Another important future direction is to utilize the data dependencies information in

our workflow for parallelization optimization. For example, we can run multiple jobs

in parallel if there are no data dependencies between them, a feature that is already

supported by some existing solutions such as Jet.
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Appendix A

Oozie Implementation of Ingestion

Process

Listing A presents the Oozie workflow implementation of main process of the use case

described in Chapter 4.

<workflow -app xmlns=’uri:oozie:workflow:0 .1’ name=’processDirsWF ’>

<start to=’getDirs2Process ’ />

<!-- STEP ONE -->

<action name=’getDirs2Process ’>

<!--writes 2 properties: dir.num -files: returns -1 if dir doesn ’t

exist ,

otherwise returns # of files in dir dir.age: returns -1

if dir doesn’t exist ,

otherwise returns age of dir in days -->

<java>

<job -tracker >${ jobTracker}</job -tracker >

<name -node>${ nameNode}</name -node>

<main -class>com.navteq.oozie.GenerateLookupDirs </main -

class>

<capture -output />

</java>

<ok to="forkSubWorkflows" />

<error to="fail" />

</action >

<fork name="forkSubWorkflows">

<path start="processDir0"/>

<path start="processDir1"/>
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<path start="processDir2"/>

<path start="processDir3"/>

<path start="processDir4"/>

<path start="processDir5"/>

<path start="processDir6"/>

<path start="processDir7"/>

</fork>

<action name="processDir0">

<sub -workflow >

<app -path>hdfs:// sachicn001:8020/user/gtitievs/workflows/ingest </app -path>

<configuration >

<property >

<name>inputDir </name>

<value>hdfs: // sachicn001:8020/user/data/probedev/files /${ wf:actionData(’

getDirs2Process ’)[’dir0’]}</value>

</property >

<property >

<name>outputDir </name>

<value>hdfs: // sachicn001:8020/user/gtitievs/probe -output /${ wf:actionData(’

getDirs2Process ’)[’dir0’]}</value>

</property >

<property >

<name>jobTracker </name>

<value>${ jobTracker}</value >

</property >

<property >

<name>nameNode </name>

<value>${ nameNode}</value>

</property >

<property >

<name>activeDir </name>

<value>hdfs: // sachicn001:8020/user/gtitievs/test -activeDir </value>

</property >

<property >

<name>dirName </name>

<value>${ wf:actionData(’getDirs2Process ’)[’dir0’]}</value>

</property >

</configuration >

</sub -workflow >

<ok to="joining"/>

<error to="fail"/>

</action >

<action name="processDir7">
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<sub -workflow >

<app -path>hdfs:// sachicn001:8020/user/gtitievs/workflows/ingest </app -path>

<configuration >

<property >

<name>inputDir </name>

<value>hdfs: // sachicn001:8020/user/data/probedev/files /${ wf:actionData(’

getDirs2Process ’)[’dir7’]}</value>

</property >

<property >

<name>outputDir </name>

<value>hdfs: // sachicn001:8020/user/gtitievs/probe -output /${ wf:actionData(’

getDirs2Process ’)[’dir7’]}</value>

</property >

<property >

<name>dirName </name>

<value>${ wf:actionData(’getDirs2Process ’)[’dir7’]}</value>

</property >

</configuration >

</sub -workflow >

<ok to="joining"/>

<error to="fail"/>

</action >

<join name="joining" to="end"/>

<kill name="fail">

<message >Java failed , error

message [${ wf:errorMessage(wf:lastErrorNode ())}]</message >

</kill>

<end name=’end’ />

</workflow -app>
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Appendix B

Oozie Implementation of Directory

Subprocess

Listing B presents the Oozie workflow implementation of the subprocess of the use

case described in Chapter 4.

<workflow -app xmlns=’uri:oozie:workflow:0 .1’ name=’processDir ’>

<start to=’getDirInfo ’ />

<!-- STEP ONE -->

<action name=’getDirInfo ’>

<!--writes 2 properties: dir.num -files: returns -1 if dir doesn ’t

exist ,

otherwise returns # of files in dir dir.age: returns -1 if dir

doesn’t exist ,

otherwise returns age of dir in days -->

<java>

<job -tracker >${ jobTracker}</job -tracker >

<name -node>${ nameNode}</name -node>

<main -class>com.navteq.oozie.GetDirInfo </main -class>

<arg>${ inputDir}</arg>

<capture -output />

</java>

<ok to="makeIngestDecision" />

<error to="fail" />

</action >

<!-- STEP TWO -->

<decision name="makeIngestDecision">

<switch >
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<!-- empty or doesn ’t exist -->

<case to="end">

${ wf:actionData(’getDirInfo ’)[’dir.num -files ’] lt 0 ||

(wf:actionData(’getDirInfo ’)[’dir.age’] lt 1 and

wf:actionData(’getDirInfo ’)[’dir.num -files ’] lt 24)}

</case >

<!-- # of files >= 24 -->

<case to=" ingest">

${ wf:actionData(’getDirInfo ’)[’dir.num -files ’] gt 23 ||

wf:actionData(’getDirInfo ’)[’dir.age’] gt 6}

</case >

<default to=" sendEmail"/>

</switch >

</decision >

<!--EMAIL -->

<action name=" sendEmail">

<java >

<job -tracker >${ jobTracker }</job -tracker >

<name -node >${ nameNode}</name -node >

<main -class >com.navteq.oozie.StandaloneMailer </main -class >

<arg >probedata2@navteq.com </arg >

<arg >gregory.titievsky@navteq.com </arg >

<arg >${ inputDir}</arg >

<arg >${ wf:actionData(’getDirInfo ’)[’dir.num -files ’]}</arg >

<arg >${ wf:actionData(’getDirInfo ’)[’dir.age’]}</arg >

</java >

<ok to="end" />

<error to="fail" />

</action >

<!--INGESTION -->

<action name=" ingest">

<java >

<job -tracker >${ jobTracker }</job -tracker >

<name -node >${ nameNode}</name -node >

<prepare >

<delete path ="${ outputDir }" />

</prepare >

<configuration >

<property >

<name >mapred.reduce.tasks </name >

<value >300</value >

</property >

</configuration >
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<main -class >com.navteq.probedata.drivers.ProbeIngest </main -

class >

<arg >-conf </arg >

<arg >action.xml </arg >

<arg >${ inputDir}</arg >

<arg >${ outputDir}</arg >

</java >

<ok to=" archive -data" />

<error to="ingest -fail" />

</action >

<! A r c h i v e Data -->

<action name="archive -data">

<fs>

<move source=’${ inputDir}’ target=’/probe/backup /${ dirName}’

/>

<delete path = ’${ inputDir}’ />

</fs >

<ok to="end" />

<error to="ingest -fail" />

</action >

<kill name="ingest -fail">

<message >Ingestion failed , error

message [${ wf:errorMessage(wf:lastErrorNode ())}]</message >

</kill >

<kill name="fail">

<message >Java failed , error

message [${ wf:errorMessage(wf:lastErrorNode ())}]</message >

</kill >

<end name=’end’ />

</workflow -app >
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