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Abstract

R is an extremely popular numerical computer environment, but scientific
data processing frequently hits its memory limits. This work presents an in-
novative approach to overcome these limitations using the Stratosphere/A-
pache Flink big data platform.

The main contribution of this thesis is the innovative approach to tackle
this problem by means of an R package and ready-to-use distributed algo-
rithm. This package not only coordinates the execution of these algorithms
but also facilitates data operations that were cumbersome with the already
existing packages.

In addition to that, a comprehensive library that includes the most rel-
evant algorithm after a study of the state-of-the-art data mining libraries
is presented. In order to guide the design, development and evaluation of
this solution, three scenarios are defined and presented, including common
mining tasks like clustering, classification and text mining.

Finally, this work investigates the opportunities for parallelization of
these complex data processing tasks and evaluates the performance of the
solution. As presented in the conclusions outlined in Chapter 5, the tests
conducted showed the competitiveness of the solution in terms of perfor-
mance and scalability, without writing code that notably differs from the
tantamount non-parallel programs.
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Chapter 1

Introduction

This chapter contains the necessary background information for the un-
derstanding of the thesis’ main core. Section 1.1 provides an overview of
the general problem of widely applicable data analysis and emphasizes the
demand for data analytics in large-scale and distributed systems. Section
1.2 gives a brief introduction to R as programming language and numerical
computing environment. In Section 1.3, we recall the basic components of
the MapReduce model and its contributions to parallel programming. Sec-
tion 1.4 provides a synopsis of the Stratosphere project. Finally, in Section
1.5 we give a brief description of some other terms and definitions relevant
to the thesis.

1.1 Data analysis to the masses

Short
presentation of
data analysis

Data analysis is usually a complex and iterative process compound of
different and heterogeneous tasks like data cleaning, quality measurement,
transformation, sampling, statistical techniques and exploratory analysis.
Traditional data warehousing and traditional business intelligence are not
able to deal with the problems and difficulties of answering all possible ques-
tions. Since they do not tap all the benefits of data, the demand for large,
flexible and real-time answers is arising. As a consequence, the so-called
deep analytics[DSB+10] (sophisticated statistical methods) are reaching
the mainstream.

Concrete
examples

For many years, the data analysis discipline has made sense of data from
disparate data sources. Namely, credit card translations, communications,
e-commerce, web analytics, spatial data, spatiotemporal data, personal in-
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formation, and social network have been in the spotlight of the industry.
Numerous areas field benefit from the analysis of data sources and enhance
their gain. For instance, those data sources previously mentioned are cur-
rently being heavily used for fraud detection, recommendation systems, data
driven marketing, traffic forecast, data-drive human resources, and trending
markets detection.

New sources
and new tools

In the era of massively parallel processing, new data sources are gain-
ing significance. Some of these sources provide data that was not capitalized
on for different reasons, mainly because of the size and the lack of formal
structures. Recently, corporations are becoming aware of the value of these
new sources like machine-generated and crowd-generated data. The explo-
sion of new data sources and the popularization of data-driven decisions
have increased the demand for most accessible data analysis tools and en-
vironments. For instance, user-friendly data pipelining tools[BCD+09] and
numerical computing environments like R, Matlab or SPSS.

BIG data
analysis to the
masses

Data analysis and information mining tools have to integrate and as-
similate the new analysis techniques arising from the use of vast amounts
of data. Big data[Zic13] brings new opportunities to the market but also
presents unfamiliar challenges. It is necessary to tame the volume, velocity
and variety of massive data.

1.2 R

What is R?R[Wic14] is a domain-specific programming language for statistics strongly
inspired by S. R follows the functional programming paradigm. In this
paradigm, the results produced by a function depend exclusively on the in-
puts and not on the state of the program. R is not only a programming
language but also a numerical computing environment. The R pro-
gramming language in combination with the CRAN packages[Hor12b] has
become a very popular toolkit for rich data analysis and modelling and,
in particular, for data mining[ZC13] More than 3000 packages available in
CRAN make it a very flexible and participative tool[Hor12a]. In addition,
these packages include detailed and meaningful documentation that provides
very valuable help and incentivizes the use of third-party code.

What can we
do with R?

Statisticians, data scientists, data journalists and other professionals who
make sense of data have embraced R because it is a very convenient tool
for interactive data exploration. Admittedly, the large number of packages
available cover a wide range of needs, from social sciences to web tech-
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nologies. Putting the spotlight on data analysis, the repository com-
prehend packages for data integration, data preparation, data cleaning,
data exploration, predictive models, evaluation, data visualization, text
mining[MHF08, HNP05], etc.

Memory: the
main drawback

The main shortcoming of R, is that it can only handle small to medium
amounts of data. R has copy-on-modify semantics and hence it might fre-
quently make copies of objects. The package plyr implements the split-
apply-combine strategy (quite similar to the MapReduce model), avoid-
ing this shortcoming by not making an extra copy of the data in the split
step[Wic11]. This limitation differs by far from the position of the database
research community, which agrees that nowadays tools should be able to
handle very large volumes of data[AAA+14]. We discuss some other options
overcome this problem in the Subsection 4.2.

CompetitorsR is not one-of-a-kind, some other environments are also powerful tools
for data analysis. In particular, Python is becoming popular for data-
centric tasks thanks to libraries like pandas [McK12], NumPy [VDWCV11],
statsmodels [SP10] and sci-kit [PVG+11], although it is a general purpose lan-
guage. More recently, a new performance-oriented domain-specific language
called Julia[BKSE12] was presented.

ConclusionIn conclusion, most data practitioners prefer numerical computing envi-
ronments because they provide a wide variety of out-of-the-box statistical
techniques. Nevertheless, it is not all rosy and R is not suitable for han-
dling vast amounts of data.

1.3 MapReduce and parallel programming

Shared nothing architectures allow clusters to easily scale out, however paral-
lelizing a program among their nodes is a very challenging task. MapReduce
aroused as a solution to parallelize computing in shared-nothing commod-
ity clusters. In this section, we will introduce the MapReduce model and
Hadoop, the free software project that was born as an open source imple-
mentation of this model.

1.3.1 The MapReduce programming model

What is
MapReduce?

The MapReduce[DG08] programming model was introduced by Google
in 2004. MapReduce was a completely different approach to big data anal-
ysis at the time and it has been proven effective in large cluster systems.

11



This model is based on two second-order functions that are coded by the
user: map and reduce (described in Section 1.4). This model hides the
complexity of some tasks related to fault-tolerance, data-distribution and
balancing from the user. In consequence, this model facilitates programmers
without any experience in parallel coding to write the highly scalable pro-
grams and hence process voluminous data sets. This high level of scalability
is reached as a result of the decomposition of the problem into a big number
of parallel tasks.

DrawbacksHowever, MapReduce also has important drawbacks. Although the
burden of programming parallel application is reduced, some common and
very simple tasks do not fit well into the single workflow of this model. In
consequence, they are complicated to write using these two second order
operators. Moreover, many of the tasks are expensive to perform, the user
code is difficult to debug, there is a lack of schema and indices and a lot
of network bandwidth might be consumed[LLC+12]. The purpose of the
different high level languages (Hive, Pig, etc.) is to address some of those
shortcomings.

1.3.2 Hadoop

What is
Hadoop?

Hadoop is a platform that runs on clusters of commodity hardware and
currently has a three layers architecture: storage, resource management and
data processing. The data processing layer is a open-source implemen-
tation of the Google-MapReduce model. The storage layer is the Hadoop
Distributed File System (HDFS). It is designed for storing very large files
with streaming data access patterns and it is derived from Google File Sys-
tem (GFS). Finally, the resource management layer was previously cou-
pled with the MapReduce programming model, but it is now responsible for
running jobs in parallel from different programming frameworks.[Vav13]

HDFS in a
nutshell

HDFS is a distributed file system, it manages the storage across a
network of machines. In order to reduce the risk of data loss, the data is
redundantly replicated. This also improves data locality. The more copies
of the files we store, the more probable that a task is located close to the
data required. This is key to the performance of data-intensive computing
tasks.

This section includes some text or images of my own work produced for the course
Business Intelligence Seminar.
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Under these circumstances, Hadoop has become a crucial industry stan-
dard for massively parallel data processing[RQRSD13, PRGK14]. AcceptanceHadoop
and some other Big Data platforms (Spark, Stratosphere, etc.) have opened
up a new world of opportunities. They enable data-intensive computation
tasks like network training[LLM10], natural language processing[Lin08] and
clustering[ZMH09] to be performed on vast amounts of data.

1.4 The Stratosphere project

What is
stratosphere?

Stratosphere is a multi-purpose platform for massively parallel com-
puting in general and Big Data Analytics in particular[ABE+14]. It is
designed to efficiently execute data-intensive tasks on clusters and specially
iterative algorithms. Stratosphere presents a database-inspired approach to
data-intensive computing, clearly shown in its query optimizer. Stratosphere
is an actively developed open-source big data platform but also a research
project in the Information Management field. Stratosphere is part of ongo-
ing research programmes conducted in the areas of massively parallel data
processing, streaming processing[LWK13], data-parallel iterative algorithms
on large datasets[ETKM12], fault tolerance[SETM13], etc.

Relation with
Hadoop

Stratosphere is mainly an enhanced replacement of Hadoop runtime
engine including top level abstractions and interfaces for writing massively
parallel programs. Stratosphere is compatible with many Hadoop compo-
nents or dependant to them. Namely, it is compatible with Hadoop input
formats and it integrates with YARN[Vav13]. This means that Stratosphere
and Hadoop are able to use the same input files and share the same re-
sources in a cluster. Furthermore, Stratosphere uses HDFS (Hadoop Dis-
tributed Filesystem) for data storage. Stratosphere is not able currently to
execute MapReduce jobs written for Hadoop. Nevertheless, it is extremely
easy to rewrite them using Stratosphere’s operators since they are a superset
of Hadoop’s operators. Complete compatibility with Hadoop’s MapReduce
is currently one of the nice-to-have requirements of the project.

Relation of
Stratosphere
with the
problem

Currently, one of the main goals of the project is to reduce the learning
curve for its users. In consequence, new interfaces and top level abstraction
have been introduced. Namely, it is possible to write PACT programs using
either a Java or a Scala API. These interfaces avoid writing a big amount
of boilerplate code for tasks like iterations, lowering the entry barrier to the
platform. The main touchpoint between Stratosphere and this work is the
Stratosphere client, which is the component in charge of submitting jobs
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to the cluster. The Stratosphere client depends on several components like
Hadoop, Jersey and Apache HttpComponents. The detailed dependency
tree can be found in Appendix C.

1.4.1 PACT dataflow model

What is
PACT?

PACT[AEH+11] is an extension of the MapReduce programming model
also inspired by functional programming and, in consequence, Stratosphere is
considered a large-scale data-processing system of the MapReduce family[SLF13,
SG14]. The main impediments of the MapReduce model are the fixed
dataflow and the limitation to only two simple second-order functions, while
Stratosphere’s flexible data flow system fits more appropriately graph anal-
ysis and machine learning problems[EST+13]. In addition, the PACT model
includes new operators (called contracts) in order to perform those analyses
easier and more efficiently:

• Map: it is applied in parallel to each key-value pair.

• Reduce: uses as input a key and a set of values related to this key and
it might also produce a set of values, but commonly it emits only one
or zero values as output.

• Cross: performs the Cartesian product over the input sets.

• CoGroup: groups all the pairs with the same key and process them
with an user-defined function.

• Match: also matches key/value pairs from the input data, but pairs
with the same key might be processed separately by the user function.

The new interface of the project, accepted into Apache Incubation[DPC+07]
under the name of Apache Flink[Mar14], now offers to the user a new inter-
face oriented to datasets and adds new operations that perform transforma-
tions to these datasets. Evolution of

the model
For instance new operations like aggregations, fil-

tering, distinct and union are now available, increasing the expressive power
of the model.
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1.5 Basic terms and definitions

During the development of this work, we have found many expected and
unexpected terms that should be introduced to people who are not familiar
with this terminology, in order to allow the reader to follow more easily the
content of this document. In some other cases, we have included terms in
this glossary to avoid ambiguity or misunderstanding.

• KDD stands for Knowledge Discovery from Data, Knowledge Discov-
ery from Data Mining or, in some cases, Knowledge Discovery from
Databases. Fayyad et al. [FPSS96a, FPSS96b, FPSS96c] summa-
rized the KDD process[KM06] in nine steps: understanding the domain
and the goals, creating the target source, cleaning and processing the
source, data reduction and projection, choosing a data mining method,
choosing the data mining algorithm, mining the data, interpretation
of the patterns and using the discovered knowledge.

• A shared-nothing architecture is that one where the nodes share
neither memory nor disk[Sto86]. Shared-nothing architecture are char-
acterised not only by a high scalability in terms of number of nodes
but also for a high availability and the possibility of creating clusters
with nodes that are far away from each other. Since the there is no
common central memory, the number of messages that the nodes have
to exchange is bigger and also, because the disk space is not shared,
involves challenges in terms of storage.

• Data mining consists in improving decisions by using historical data[Mit97]
and, for this purpose, machine learning algorithms play a key role in
many cases. Machine learning is a subfield of Artificial Intelligence
that studies how computer can automatically learn knowledge, provid-
ing the technical basis for data mining[WF05].

• Data frames are lists of vectors and they are the most common way of
manipulating data in R[Wic14]. The rows of the data frames are called
observations and the columns are called variables, although we will
normally refer to them as instances and dimensions respectively.

• In this work we understand as distributed file system any file system
that stores the information in different nodes but behaves as a single
one. This is independent from the fact that a distributed operating
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system is used, there is a single point of failure, all nodes keep replicates
of the data or all nodes store all the data.

• A cluster is a group of nodes connected between them that can com-
municate although they do not share physical resources. We under-
stand as a node of a cluster every machine either physical or virtual
that has its own independent disk and processing unit. The nodes
might or might not be physically located together.

• A scenario, as it is understood in software engineering, is a scene that
illustrates the interplay between the user and a system or between
different systems. Scenarios are typically represented by a path or by
a number of algorithmic steps.

• In Hadoop and Stratosphere, a job is program written using the group
of operators facilitated by the model and the corresponding arguments
to execute this program. Each job is composed by one or more tasks,
that are the minimum unit of work that can scheduled to run in a
node.

• In this document, we will constantly mention the term analytics, and
in this work we understand as analytics what Sudipto et al.[DSB+10]
called deep analytics : sophisticated statistical methods like linear mod-
els, clustering or classification that frequently are used to extract
knowledge from the data.

• Scaling up consists in increasing the resources of the machines, for
instance increasing the processing power, storage capacity or the mem-
ory size. Scaling out, however, refers to increasing the number of
nodes. Scaling out is, in normal conditions, more expensive and make
programs that run on these architectures more complex. However it
is convenient when the limit has been reached scaling-up or scaling-up
becomes too expensive.
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Chapter 2

A new approach for massive
scale analytics using R

We know the
problem, now
we try to find
a solution

In the introductory chapter, we have explained the demand for data ana-
lytics in large-scale and distributed systems (Section 1.1). We have pointed
out how R covers this demand for data analytics in small amounts of data
but fails in large-scale level (Section 1.2). After that, we have disclosed
the insights of the MapReduce model (Section 1.3) and the Stratosphere
projects. Namely, we have seen the expressivity shortcomings of the MapRe-
duce model and mentioned some efforts of the Stratosphere project to make
the platform more accessible to data analysts. In this chapter, we are going
to do an analysis of the requirements of our solution and present the goals
behind it.

2.1 Motivating problems

In this section we present some examples that underline the usefulness and
highlight the advantages of our proposal. At the same time, our solution is
driven by the goal of efficiently execute these examples on vast amounts of
data. For this purpose, we present two scenarios related to the most typical
data mining problems: clustering and classification. In addition to that, we
also present a problem related to text mining and finding popular terms.
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2.1.1 Clustering with K-Means

The first example that we are going to present is focused on a very well-
known machine learning task: clustering. What is the

problem that it
solves?

Clustering consists in grouping
elements in accordance with the similarity between them. In this problem,
the structure of the data is unknown and hence clustering is considered a
problem of unsupervised learning. Since the given data is unlabelled, we
used as a reward of the algorithm the distance to the cluster centre. The
same criterion will be used to evaluate the solution after the clustering.

The data usedAs a starting point, we have selected a dataset that comes from the
Kaggle Ford Challenge. The actual goal of this competition was to classify
the dataset in order to detect whether the driver of the car was alerted or
not. However, we use this dataset for illustration purpose of data processing
on a real dataset. Kaggle is a platform for machine learning competition
with the aim of promoting data analysis on real life cases. These competi-
tions have resulted in significant research contributions[NSR11, HAMA+11,
BTH13]. Among the different variables available, we have selected two nu-
meric variables (P7 and V2). We have selected numeric variables because
they avoid the complexity of defining the distance between them. We have
selected only two in order to plot the data observations as 2D data points.

Description of
the scenario

The process here described is summarized in Algorithm 1. We assume
that there is no preprocessing involved in this use case. Thus, after loading
the data in the R environment the next step would be to cluster the data. We
run the algorithm several times using different number of clusters in order
to make comparison between them. Once the data is clustered, we sample
the data to extract some points and compute the distance between them.
The data sampled is the same data that we have clustered before because
it is not necessary to make a distinction between training and testing data
since the Dunn index is an internal evaluation method[RAAQ11, BP98].
The Dunn indices computed are shown in a bar plot in order to let the user
decide which one is the one desired according to his criteria. Once the user
has decided in favour of one of the cluster solutions, the data points are plot
using a different colour for each cluster for visual inspection purposes.
Finally, the cluster information is appended to the original file.

Solving this
problem with
R

An example code to do this task in R in a single machine is available
in Listing 2.1. Before the data is clustered, it is loaded into memory and
stored in a data frame. We stick to the default implementation of k-
means provided by the stats library, which is shipped as one of the core
components of R. The Hartigan-Wong k-means[HW79] method is used, since
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it is the default method of the library. Once the data is clustered, the data
is sampled and the distances between the points of the sample calculated.
These computed distances are used as an input of the cluster.stats method
of the fpc package, which stands for fix points clustering. After deciding the
best solution to solve our problem, the data frame including the clusters is
written back in secondary memory.

Benefits of our
approach

R successfully covers these tasks for small amounts of data. Even
for medium datasets, it is likely to consume all the memory available and
crashes the interpreter when clustering or computing distances. The benefits
of our approach to these kinds of problems using the Stratosphere platform
are evident. Current interfaces available do not allow the user to integrate
the use of the cluster with single machine tasks like data visualization and
processing of small portions of data. Hence, with this example we illustrate
the convenience and even need of an interactive interpreter that integrates
the best of two worlds: the scalability of Stratosphere and the flexibility of
R in data processing and data visualization.

2.1.2 Classification with Naive Bayes

What is the
problem that it
solves?

In this example, we are going to cover another very popular machine
learning task: classification. Classification consists in predicting the cat-
egory of an observation based on the categories and instances present in
labelled training data. Since the training data is labelled, classification is
considered a supervised learning task. The task is composed of two very
differentiated parts. In the first part, the algorithm learns from the train-
ing dataset in order to recognise a pattern in the data and constructs a
model as a result of it. In the second part, the category of unlabelled in-
stances is predicted based on the constructed model. This second part
is frequently called scoring, since linear methods assign to each unlabelled
instance a score that represents the affinity of the instance to belong to
one of the classes. Classification methods have been intensively used to
solve problems like spam detection[BB08], medical diagnostics[Bra97a], text
categorization[Seb02] and internet traffic inspection[NA08].

The data usedFor this scenario, we have used a dataset which contains the votes of the
U.S. House of Representatives Congressmen on 16 key votes[BL14]. This
dataset has been selected due to it offering a good amount of categorical vari-
ables which, at first sight, appear to contribute to the classification indepen-
dently to the presence or absence of other variables. We have chosen categor-
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Listing 2.1: Clustering with K-Means using R
# 1 Read only two columns of the data

sm_mydataframe <- read.csv("fordTrain.csv")

# 2 K-Means to cluster

sm_clustered2 <- kmeans(sm_mydataframe , 2)

sm_clustered3 <- kmeans(sm_mydataframe , 3)

sm_clustered4 <- kmeans(sm_mydataframe , 4)

# 3 Sample data

sm_samplerows <- sample(nrow(sm_mydataframe) ,100)

sm_datasample <- sm_mydataframe[sm_samplerows ,]

sm_sampleclustered2 <- sm_clustered2$cluster[sm_samplerows]

sm_sampleclustered3 <- sm_clustered3$cluster[sm_samplerows]

sm_sampleclustered4 <- sm_clustered4$cluster[sm_samplerows]

# 4 Compute the distances between points

sm_d <- dist(sm_datasample , method = "euclidean")

# 5 Evaluate the clustering

library(fpc)

sm_dunn <- c(

cluster.stats(sm_d, sm_sampleclustered2)$dunn2 ,

cluster.stats(sm_d, sm_sampleclustered3)$dunn2 ,

cluster.stats(sm_d, sm_sampleclustered4)$dunn2

)

# 6 Plot dunn indexes

barplot(sm_dunn , names.arg=c(

"k=2", "k=3", "k=4"

))

# 7 Decide which solution is the best one

sm_bestsample <- sm_sampleclustered2

sm_bestclustered <- sm_clustered2

# 8 Plot to visualize the best solution

plot(sm_datasample$P7 , sm_datasample$V2 , col=sm_bestsample)

# 9 Append cluster assignment

sm_finalframe <- data.frame(sm_mydataframe , sm_bestclustered$cluster)

write.csv(sm_finalframe , "fordTrainOUT.csv")
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ical variables because quantitative attributes are usually discretized before
applying Naive Bayes as some other classification methods[YW02, YW09].
The use of categorical variables hence avoids the prepossessing and loss of
information due to the discretization. Due to the assumption of indepen-
dence of the Naive Bayes method; if we had chosen variables with strong
dependencies on each other, it would have led to poor classification perfor-
mance.

Description of
the scenario

The process here described is summarized in Algorithm 2. Initially, two
files are read as input from the file system. The first one contains the training
dataset and it is used to create a model using the Naive Bayes classifier. This
process of training basically consists in counting the number of instances that
belong to each class for every possible value of the variables. The second
one is the unlabelled dataset and it is used to predict the category of its
instances. This prediction is done in accordance with the probability model
constructed based on the counting described before.

Benefits of our
approach

We propose the training of the dataset using the R environment and the
prediction or scoring using the data cluster facilities as a solution to this
problem. As we have mentioned before in Section 1.2, many researchers use
R due to the cutting-edge functionalities, including mining models from the
data. Very frequently, the size of the labelled samples is usually limited[CFB08].
Furthermore, new techniques are able to learn a new category using a very
limited number of examples in some fields like computer vision[FFFP07,
FFFP03]. In consequence, a scenario where the training data fits in main
memory, but it is necessary to store the unlabelled data in a cluster seems
very probable. Under this scenario, our solution would be very beneficial.

2.1.3 Finding frequent terms

OverviewIn this subsection, we present an scenario with the goal of finding relevant
in large corpus and see how they are semantically related. The algorithm
is very similar to a word count including a step for removing irrelevant
words (stop words) and another step for getting rid of those words that are
not relevant (frequent) enough. Finally, we will find similarities among those
popular words. The different steps of the scenario can be found in Algorithm
3.

Implementa-
tion in
R

As it can be observed in Listing 2.3, the implementation in R is quite
straight forward using the qdap package[LS08]. This package has been used
for social media mining[HD14] and other text mining applications[JBB14].
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Algorithm 1: Clustering with K-Means

Input: inputFilePath, outputFilePath
1 Read dataPoints from inputF ilepath.
2 clusters ← cluster dataPoints using different number of clusters.
3 dataSample ← take a sample of dataPoints.
4 d ← Euclidean distance matrix of dataSample.
5 dunn ← Compute the Dunn indices of clusters using d.
6 Plot the different Dunn indices as a bar chart.
7 best ← choose the solution with maximum Dunn index.
8 Plot dataSample visualizing each cluster of best in a different colour.
9 outputF ilePath ← append best to dataPoints.

Algorithm 2: Classification with Naive Bayes

Input: inputTraining, inputUnlabelled
Output: predictions

1 Read trainingInstances from inputTraining.
2 Read unlabelledInstances from inputUnlabelled.
3 model ← create a Naive Bayes model based on trainingInstances.
4 predictions ← predict the classes for unlabelledInstances using
model.

Listing 2.2: Classification with Naive Bayes using R
# Required library

install.packages(’e1071 ’)

library(e1071)

# Load the required datasets

dataset_train <- read.csv("train.csv")

dataset_classify <- read.csv("unlabelled.csv")

# Create the model

model <- naiveBayes(dataset_train , dataset_classify)

# Predict the class

prediction <- predict(model , dataset_classify)

# Write to disk

finalframe <- data.frame(dataset_classify , prediction)

write.csv(finalframe , "output.csv")
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This package can handle the selection of most frequent terms and stop-
wording in a single step and hence we will expectedly reproduce the same
behaviour with a PACT program. In this scenario, we have opted for writing
a more idiomatic code in R making use of the vectorization and the apply
function.

Alternatives
for semantic
relatedness

In our case, we are going to use synonyms lookup offered by the qdap,
giving consistency to the solution, since we are using the same package to
find the most frequent terms. Nevertheless, there are many ways of finding
synonyms or similar terms, from traditional dictionaries to lexical databases
like WordNet[Mil95, MBF+90, Fel98]. Moreover, many different approaches
can be used to measure the similarity between two text strings, which can be
grouped into term-based and character-based[GF13]. Techniques for seman-
tic relatedness have been proven effective for instance for querying electronic
health records[PPM+11].

Benefits of this
scenario

Social media have opened up new opportunities for text analysis and
opinion mining. Among other purposes, finding frequent terms is a helpful
technique for problems like frequent term distribution and dataset profiling[DRSG04].
However, the significant amount of data generated in social media clearly
hits the limits of already existing text mining tools[MBR12]. On contrary to
those approaches[MAEA05] that give an approximate solution to the Top K
problem using data streams, we propose here a exact batch-oriented solution.

Algorithm 3: Most frequent terms

Input: inputFile
1 allWords ← Read all the words from inputF ile.
2 interestingWords ← Remove all the stop words from allWords.
3 frequentWords ← Choose the most frequent words in
interestingWords.

4 foreach word in frequentWords do
5 synonyms ← Find all the synonyms of word.
6 Find the intersection between synonyms and words
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2.2 The complexity of writing massively par-

allel programs

MR/Strato-
sphere doesn’t
fit the needs of
the majority

There is no doubt that the MapReduce and the consequent programming
models are a major step forward in parallel programming. As we have men-
tioned before, they have provided a higher level of abstraction and hence
greatly facilitated the implementation of data-intensive tasks. Nevertheless,
writing parallel programs is a cumbersome and onerous process that is not
appealing for the majority of the data practitioners, as we have mentioned
before. In this section we are going to expand this idea, including exam-
ples of parallel programs and explaining its implications. Furthermore, the
Beckman report[AAA+14], which discuss the state of database research, re-
marks the need of single tools that facilitates the end-to-end processing and
understanding of the data, from a small amount of data up to very large
volumes.

Evidences of
the problem

First, it is necessary to put the spotlight on the targeted users of the
solution. Data scientists is an ambiguous term that covers many different
job positions and roles. A survey[HMV13] conducted by Harris et al. showed
that the largest group of respondents was called Data Researchers and they
are the most skilled group in Statistics, including data manipulation with R.
At the same time, this group was the least skilled group in Big Data systems
and implementation of machine learning algorithm. This is no wonder, since
their programming skills are also inferior. Similarly, Kandel et al.[KPHH12]
conducted an interview study and also detected that those user who perform
most of their analyses with the R package were not able to write code that
runs at scale. Moreover, the article also highlights the importance of using
a the same environment to facilitate data visualization and analysis at the
same time.

Conclusions of
these results

These results show the big data skills gap in professionals that work with
statistical computing environments. This gap evidences that neither the pro-
posed high level languages nor the numerous solutions (see Chapter 4) for
bringing large-scale analytics to the mass audience (and the the R environ-
ment in particular) were resounding successful. As stated by Markl[Mar14],
it is impossible to educate the ever-increasing number of data scientist in all
the required skills to extract knowledge from big amounts of data. Hence,
these results uphold the idea that the entry barrier to parallel computing
should be lowered for these users.

Although Stratosphere offers a more expressive interface, writing a par-
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allel program is still not a trivial job. Explained with
an example

The implementation of an iterative
KMeans algorithm described in Figure 1 shows that it is necessary to define
several operations with their different input and output structures. In this
first example, we can observe how Stratosphere benefits from the new fea-
tures added (which were described in Section 1.4) like dataset broadcasting
and the additional operator GroupBy, but it is not always the case.

Even simpler
tasks

Figure 2 shows a simple program that outputs the most popular terms
found in the input document. This is a simple case as we do not have to
broadcast any dataset to all the nodes and after the tokenizing the data
structure reminds the same. However, it is necessary to three additional
classes (two for flatmaps and one for the reducegroup), resulting in extremely
verbose code although the logic enclosed in this code is not very complex.

Some
examples with
code

In order to illustrate how the code looks, we have chosen two very differ-
ent examples. First, at it can be observed in Listing 2.4 how Stratosphere
makes easy some data transformations like simple aggregations (sum, mini-
mum and maximum). However, it is necessary to define a method and ma-
nipulate a collector in order to perform some other simple tasks like keeping
the most frequent element (Listing 2.5).

2.3 Our approach and the KDD process

Why this
section?

In this section, we would like to define the tasks within the KDD process
(defined in 1.5) that we are going to cover at higher level of detail. We have
mentioned that R has became a very popular numerical computing environ-
ment for scientific data processing. Nowadays, collecting and analysing data
is an essential part of the scientific method but also of the day-to-day tasks
of many companies.

R and data
extraction

The target dataset can be created in R using a classical JDBC connector
to the database (RJDBC ) or in a variety of ways to query heterogeneous
data sources. For instance, the rattle package[Wil11, Wil09] allows the user
to load data from CSV files or any ODBC connector. SQL has became a
de-facto standard to filter only the data of our interest or to take a sample
of the data. It is also possible to use SQL to query a CSV file or an R data
frame with the sqldf package. Structured documents can also be queried
with RXQuery. It is possible to compute aggregations either using the SQL
language or once the data is loaded in the R environment with the aggregate
function. In conclusion, although we need some basic functionalities to load
data into data frames and to sample data, query languages already cover this
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Listing 2.3: Frequent terms using R
install.packages("qdap")

# Load the data

fileName <- ’inputCorpus.txt’

allwords = readChar(fileName , file.info(fileName)$size)

# Select the most frequent elements

library(qdap)

frequency <- freq_terms(allwords , top =1000)

words <- frequency[,"WORD"]

# Find coincidences based on synonyms

lapply(words , function(x) intersect( synonyms(x, return.list=FALSE), words)

)

Listing 2.4: Aggregation with Stratosphere
DataSet <Tuple2 <String , Integer >> aggregated = inputDataset.groupBy (1).sum

(0)

Listing 2.5: Keep frequent items with Stratosphere
public void reduce(Iterator <Tuple2 <String , Integer >> in, Collector <Tuple2 <

String , Integer >> out) throws Exception {

int minimum = 0;

while( in.hasNext ()){

Tuple2 <String , Integer > currentTuple = in.next();

if( currentTuple.f1 > minimum ){

minimum = addElement( currentTuple );

}

}

for( Tuple2 <String , Integer > tuple : mostFrequent){

out.collect(tuple);

}

}
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Figure 1: Iterative KMeans for Stratosphere data flow
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Figure 2: Frequent Terms for Stratosphere data flow
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part of the KDD process. We will cover in Subsection 4.2.3 some packages
already available to perform these tasks in big amounts of data.

Difficult stepsAbout the pre-processing and transformation of data, there are a variety
of tasks that might be performed by the users. In general, the data process-
ing tasks take more time than the data mining step[Pal07] and in this step
we could include tasks like normalization of values, combination or matrices,
PCA, data cleaning, inconsistent or malformed data, data reshaping[Wic07],
etc. Most of these operations are usually easy to parallelize but there are a
lot of different needs that they have to cover, which makes these steps the
most difficult to tackle in our approach. Similarly, there are many options
to do the interpretation and evaluation of the result, but in this case usually
the amount of data we have to work with is not that big or can be reduced
just taking a sample of the data to work around this problem.

Data miningThe data mining step consists in the application of algorithms to discover
patterns in the data. This step is usually the most difficult part to parallelize
due to the complexity of the algorithms and where we believe our approach
can have a very good competitive advantage. Not without a reason, a lot
of effort has been put in paralellizing different data mining algorithms and
offering them in libraries.

Data
visualization

Finally, data visualization might be useful in different steps of the pro-
cess but these tasks cannot be distributed among different nodes. R can
however cover this tasks with packages like tabplot [TdJDN13], oriented to
the visualization of large dataset by presenting how distributed are the in-
stances of the whole dataset using one dimension, facilitating data discovery
and exploration. It is also possible to sample the data in order to speed up
the process. Some other packages explore similar problems like representing
large amounts of data with a high number of dimensions[OW11, WO11].

2.4 Design goals and conclusion

Link with the
previous
sections

In summary, so far we have studied a few cases that motivate the con-
ception of a different solution and analysed the two main ideas behind our
approach. As we have discussed before, we have shown that our targeted
users do not want to develop hand-coded parallel programs and evidences
support that this is the largest group of users among the roles described as
data scientists. In this section, we will present the main design goals of our
solution which aims to satiate the appetite for large-scale data processing.
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We will provide a library that offers functions very similar to those al-
ready existing in R, mimicking the interface as much as possible, but pro-
cesses the data in the cluster. Overview of

the idea
For this purpose, we also provide the means

to load the answer in R or a sample of the output, in case it is very big.
We do it this way for the reasons explained before: first, writing parallel
programs is a cumbersome and onerous process that is not appealing for
the majority of the data analysts and, second, most of the complex tasks
performed with data to extract knowledge from it can be covered with a
library.

Easiness is a
must

In this world of tradeoffs, accessibility is very often a neglected consid-
eration. We aim for big data platforms to reach a wider audience by making
it a top priority and our approach to it is offering an interface that is as sim-
ilar as possible to the well-known R packages. This results in a mechanism
that allows the user to effortlessly execute the ready-to-use algorithm and
operations with the data.

The design of a library that covers different data processing tasks is one of
the most significant parts of this work. Details about

the library
In consequence, this library will cover

not only machine learning and data mining tasks but also file management.
The design should also be realistic. It is impossible to implement a very
exhaustive library that cover a huge number of cases. The library should be
a far-reaching but prudent. In other words, we are aware that is not feasible
to include any possible algorithm in a distributed library. The algorithm
will be selected based on the previous experiences in creating data processing
libraries, putting the focus on those for distributed computing. Furthermore,
the functionalities selected should be suitable for large-scale computation
and fit ensemble scenarios of processing in R and in the cluster as those
presented in Section 2.1. Last but not least, the functionalities should be
categorized to do not deliver a hotchpotch to the user.

What the
software
should do?

The purpose of the resulting software is executing some of the tasks
already available in different R packages but in a distributed system using the
Stratosphere big analytics platform. With this software, we do not intend to
reinvent the wheel and thus it will be implemented on top of already existing
packages that bring functionalities for interaction with HDFS or any other
reusable component. We will put the focus on bringing to the user new
functionalities to interact with both the Stratosphere execution engine and
the HDFS distributed file system of the cluster.

Easy for the
users

Finally, the software should be accessible for the analysts. First of all,
they should be able to perform analysis in the cluster within the R envi-

30



ronment as they would do any other task. This also means that installing
libraries or any other software in the main node or in the slave nodes of the
cluster should be avoided if possible. As we have mentioned (see Section
3.3), R packages are the de-facto system for software distribution among the
R community and our solution will preferentially follow this lead.

In summary, the goals presented in this chapter can be summarized in
the following points:

• Efficient execution in large amounts of data.

• Easiness for the user and accesibility.

• Designing a realistic but far-reaching library.

• Avoiding writing parallel programs.

• Facilitating the transfer of the data between the cluster and the R
environment.
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Chapter 3

Developing the solution

The purpose
of this chapter

In the second chapter, we have presented the main ideas behind our
approach. In this chapter, we investigate the possibility of bringing our
idea to life. In summary, we previously proposed the creation of a library
that covers the most popular tasks in data analysis and manipulation and
allows working with traditional R packages and large-scale analytics in the
cluster at the same time. For this purpose, we had defined the scenarios that
motivate our solution (Subsection 2.1), the tasks targeted (Subsection 2.3)
and the design goals of the solution (Subsection 2.4). Since developing the
whole system would be biting more than we can chew by far, our concrete
goal in this chapter is to prove that this approach can lead to a solution
that reaches the comfort zone of those users that use R for data processing
purposes focusing on those scenarios.

Structure of
the chapter

In the first section (3.1), we will architect the software that will be im-
plemented in order to provide a solution for the problems discussed before.
In the section 3.2, we will define the library that will cover data mining tasks
as we argued in section 2.3. In the third chapter (3.3), we will discuss about
the resulting software distributed as a package. Finally, we will provide some
examples of how to solve the problems presented to motivate our solution
(Section 2.1) in Section 3.4.

3.1 Architecting the solution

Why an
architecture?

In the previous chapter we described what is the approach that we want
to follow to solve this problem and in this chapter we will give details on how
we decided to solve it. The first step to the implementation of the solution
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is architecting a feasible solution to achieve the proposed goals. As it can
be observed in Figure 3, several components take part in the architecture,
and hence a good planning becomes essential.

What do we
mean by
architecture?

Architecting the solution consists in deciding the components of the sys-
tem that are going to take part, defining how they are going to interact and
finally sketching a diagram to represent this interaction and to make easier
the communication of the idea. Since one of our goals is reutilizing already
existing software, interaction with third-party software is also a critical part
of the architecture.

Interaction
with the
cluster

Figure 4 shows that the communication with the cluster has two touch-
points: the Stratosphere client that is necessary to execute the jobs and the
HDFS system. It doesn’t make sense to reimplement neither a Stratosphere
client nor a library to interact with the HDFS system, when the Stratosphere
java client and the rhdfs R package can be reused. Besides the saved time
and resources, reusing these software pieces also assures that the code will
be compatible with new releases of the Stratosphere system and the HDFS
file system as long as the interface does not change without any effort. More
details on how these components technically interact will be revealed in
Section 3.3.

Interaction
with the library

In our design, the R package is responsible for storing the library, that
is a compilation of Stratosphere programs in JAR executables. We believe
that this is the right method because the interface offered in these programs
are strongly coupled with the code that wraps their functionality in R, so a
small change in the interface of the program has to be reproduced in the R
package. The main problem of this approach is that the programs should be
compatible with the version of Stratosphere installed on the cluster nodes.
Initially, this problem is easy to work around since there are not many ver-
sion of the Stratosphere system and hence it is reasonable to include a JAR
file compiled for each of them. This system could be improved with compo-
nent that could automatically generate an R wrapper for any Stratosphere
program, but it is not necessary at this stage.

3.2 Library

Connection
with the
previous
chapter

Previously we have discussed that we want to cover the data mining
algorithms plus some other tasks with our solution (in Section 2.3) and the
goals that we will have for this library (in Section 2.4). In this section, we
are going to use this as a starting point of the library we want to design. As
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Figure 3: Solution architecture

Figure 4: Execution of jobs using the stratosphereR package
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an output of this study we will have a list of algorithms that would conform
an ideal library for large-scale data processing and mining. The resulting
library is not related to the choice of R as language and could be useful for
any other interface, which makes sense since R is not the language of choice
for everyone as we discussed in Section 1.2.

Fayyad et al.[FPSS96a] identified five groups of data mining methods:
classification, regression, clustering, summarization, dependency modeling
and change detection. Our goal:

clustering,
classification
and regression

Due to their impact on the machine learning libraries
used as reference, we are going to focus on the first three methods. Clas-
sification and clustering have already been presented in Subsection 2.1.2
and 2.1.1, respectively. Regression consists in discovering how a variable
is affected by other variables in order to predict the value when the values
of other variables are known.

We will choose
1+ algorithms

For each group, we will choose one or more than one algorithms. The
No Free Lunch Theorem for machine learning[Wol96] refuted the hypothesis
that it is possible to find an inherently superior classifier to all the others.
In Magdon-Ismail[MI00] words, “No Free Lunch theorems have shown that
learning algorithms cannot be universally good”. In consequence, we will
not restrict the choice to one algorithm for classification, one for clustering
and one for regression.

How to choose
the methods?

We will explain now how we decide which mining algorithms are relevant.
The selection will be based on the criteria exposed in Section 2.4: presence in
other machine learning libraries, adequacy for large-scale parallelization and
capability of participation in ensemble scenarios. We have chosen four li-
braries among those covered in Section 4.1: sci-kit [PVG+11], a very compre-
hensive machine learning for Python; Mahout [OADF11], a scalable library
with algorithms implemented on Hadoop and Spark; MADLib[HRS+12], a
library for highly-scalable relational database; and MLbase[KTD+13], a li-
brary for Spark. We believe that the chosen libraries have a relevant impact
in academia and industry. Furthermore, we have included in tables 1, 2 and
3 the R package that contains the implementation of the algorithm.

ConclusionsBased on the analysis shown in Table 1, the most popular techniques
for classification are Support Vector Machine, Logistic Regression,
Naive Bayes and Random Forests. Table 2 shows that K-Means is
the only technique with strong presence for clustering. Similarly, we can
observe in Table 3 that Logistic Regression is the only technique with
strong acceptance among the large-scale libraries for regression analysis.
While elaborating this table, we have noticed that the stochastic gradient
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Table 1: Classification algorithms in different machine learning libraries

Technique R scikit Mahout MADlib MLbase
Logistic regression glm Y Y† Y Y
Naive Bayes CORElearn Y Y Y‡ N
Perceptron rminer Y Y N N
SVM e1071 Y Y N Y
Quadratic classifiers DiscriMiner Y N N N
K-Nearest neighbor CORElearn Y N N N
Boosting gbm Y N N N
Random forests randomForest Y Y Y‡ N
Neural network nnet Y N N N
Gene Expression GeneReg N N N N
Bayesian networks BayesTree N N N N
Hidden Markov models HiddenMarkov N Y N N
Learning vector quantization LVQTools N N N N

† Although Mahout is a scalable machine learning library, Logistic Regression implementation
is not parallel.
‡ These methods are in early stage of development and subject to change, in accordance with
the official documentation.

Table 2: Classification algorithms in different machine learning libraries

Technique R scikit Mahout MADlib MLbase
Canopy Not in CRAN N Y N N
K-Means kkmeans Y Y Y Y
Fuzzy K-Means fanny N Y N N
Streaming K-Means stream N Y N N
Spectral kernlab Y Y N N
DBSCAN fpc Y N N N
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descent[Zha04] method for optimization seems to be widely used in com-
bination with regression techniques. Multilayer perceptron network and
neural networks have no big presence in libraries, although they have been
proven effective in many applications, due to the complexity of finding suit-
able initial weights and learning parameters for them [CCM+00, MPC+93].

3.3 Creating the R package

What are we
presenting
here?

In this section, we present the R package developed which is part of
the deliverables of this work. R packages are distributable, cross-platform,
easy to implement, memory-friendly and easy to maintain[Lei08]. They
have emerged as the de facto standard for distributing cutting-edge data
analysis functionalities. The package that we are going to present here
follows the suggestions and guidances from the R Foundation for Statistical
Computing [Tea99].

Structure of
the package

As we have explained in Section 3.1, the package is composed of different
files and the namespace is organize accordingly. The package has three
namespaces that we believe conceptually divide the functions: functions
to apply machine learning methods, functions to interact with files in the
cluster and functions to control job execution. The last namespace (job) it
is intended to cover the needs of power users and ideally the users only have
to use it if the library does not cover their needs or want to have full control
of the execution in the cluster. The exact members of the package provided
are represented as a tree in Figure 5. Moreover, Figure 4 shows how the
different component interact with the cluster.

3.3.1 Submitting jobs to the cluster

How do we
submit the
jobs?

Submitting jobs to the Stratosphere JobManager is obviously one of
the main responsibilities of the stratosphereR package. In Stratosphere,
Stratosphere-Client (previously know as PACT-Client) is responsible for
parsing the arguments, checking them and executing either a blocking or
non-blocking call to execute the PACT programs on the cluster. We have
integrated this interface into an R package by invoking Java classes from
R[Ver10]. Thanks to the rJava package, we are able to access any object
defined in Java. In our case, we have decided to interact with the command
line interface of the client. By default, the calls are blocking in order to
mimic other R packages’ behaviour.
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Table 3: Regression algorithms in different machine learning libraries

Technique R scikit Mahout MADlib MLbase
Least Squares lsmeans Y N Y N
Ridge Regression bigRR Y N N Y
Lasso glmnet Y N N Y
Proportional Hazards glmpath N N Y N
Elastic Net elasticnet Y N Y N
Least Angle Rxshrink Y N N N
Bayesian BGLR Y N N N
Logistic ncvreg Y Y Y Y
Perceptron N Y N N N

stratosphereR

mining

clustering

randomInitializationKMeans

kmeans

classifyFromFile

classifyFromModel

savePMMLModel

frequentTerms

file

toDataFrame

sample

sampleNumeric

sampleToFile

head

tail

job

run

configuration

Figure 5: Tree representing the stratosphereR package
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Why we do it
like that?

As we have mentioned in section 2.4, it is not our intend to ”reinvent
the wheel” and hence one of our goals is to maximize the reutilization of
the already existing code. By reusing this component, we also assure that
the package is going to be compatible with new upcoming versions of the
platform as long as the interface of this package does not change. At the
same time, the exceptions that could occur in the java Stratosphere client
will be caught in the R code and showed when the client fails, giving the
same level of transparency to the R users.

ConfigurationIn order to be able to submit a job to the cluster, the package needs
some basic information. First of all, it is necessary to know the host and
the port that it is necessary to connect to, if the values given in the config
file are not correct. It is also necessary to know the degree of parallelism
that we want to use for the execution of the jobs, again in case we are not
going to use the value given by default in the configuration file. The path
of this configuration file must be also defined if it cannot be found in the
STRATOSPHERE CONF DIR environment variable.

3.3.2 Working with files from the distributed file sys-
tem

Why we need
this?

Low-level functionalities to work with files like reading or writing lines
and binary blocks are provided by rhdfs package. We believe these low-level
functionalities make processing distributed files hard and hence we have
provided new functionalities built on top of this package.

First, we allow sampling a text file and bringing it to R memory (file.sample).
It is also possible to sample the file and write the output back in HDFS
(file.sampleToFile). Sampling

options
This option is particularly interesting because most of

the file stored in a distributed filesystem do not fit in main memory. In
consequence, we can take a representative sample of the file for different
purposes like running accuracy tests (see Subsection 2.1.1). In addition, we
have included also a function (file.sampleNumeric) that converts numeric
values into R native numeric data types at the same type as the sample
is taken, taking this load off the user and speeding up the process since it
can be performed in only one step. Finally, we have included the option of
taking a sample of the first or last lines of the file using file.head and file.tail
respectively.

Also the
famous data
frames

Data frames are lists of vectors and they are the most common way of
manipulating data in R[Wic14]. A proof of this success is the package pan-
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das [McK12], which brings data frames to Python. Surprisingly, the rhdfs
package do not offers any operation oriented to data frames. We believe
that files from HDFS must be easily exported into data frames and hence
the file.toDataFrame allows this operation. This would be particularly in-
teresting for those jobs that use a big chunk of data as input but produce
an output that fits into R memory limitations, as the KMeans scenario that
we presented in 2.1.1, the frequent terms in 2.1.3 or aggregation of data.

Hitting R
memory limits

Obviously, these operations might try to bring to memory files that do
not fit into R memory. These situations are obviously not wished and result
in disappointment for the user. Although there are different ways of estimat-
ing the space available in R[Wic14], we failed to calculate or approximate
the amount of memory required to perform these operations (sampling files
or loading frames in a table). Furthermore, we found that not only the space
needed to bring the file might cause problems due to R’s memory limita-
tions. We experienced this with a simple operation like selecting the blocks
that we are going to sample. The problem happened because the number of
possible blocks were too high due to the big size of the file and the decision
of bringing to memory only small blocks to reduce the communication be-
tween the cluster and the client. Since the number of possible blocks were
too big, the system could not keep a reference to all of them and we had to
work around this problem.

3.3.3 Data mining functions

What do we
present here?

Finally, as a result of the analysis of data mining libraries presented in
Subsection 3.2, some data mining functionalities have been introduced in
the R package. These functions are defined within the mining namespace
and it is shown in Figure 5.

Related with
the KMeans
scenario

In relation with the KMeans scenario, it is possible to execute the fully
distributed KMeans algorithm (which dataflow is represented in Figure 1)
using either random initialization or any other initialization points defined
by the user. The random initialization samples the file from the distributed
file system.

Related with
the Naive
Bayes scenario

In relation with the PMML models that we will discuss in detail in Sub-
section 3.4.2, it is possible to classify a file of unlabelled instances using a
PMML file (classifyFromFile), to classify the instances using an R model
(classifyFromModel) and also to store a PMML model either in the dis-
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tributed file system or in a traditional one (savePMMLModel). An example
of how PMML models look like can be found in Appendix A.

Related with
the Frequent
Terms scenario

Finally, we also have covered a very simple text mining use case for the
problem proposed in Subsection 2.1.3. The function mining.frequentTerms
allows user to find the most frequent terms in a large corpus. In this case,
the only difference with the functionality provided in the qdap package is
that the set of stop words is fixed and it is not possible to define new ones.

3.4 Examples

What is this
section about

In this section, we retake the problems presented in Section 2.1 and
discuss about how they can be solved using our approach. This section can
be considered a kind of evaluation since we will provide the code that uses
the stratosphereR package to solve the problems and discuss the differences
between both versions, differences which are summarized in a comparative
table.

3.4.1 Clustering with K-Means

RecapIn this subsection, we proceed to present the differences introduced in
the code to execute the code in the cluster using the stratosphereR package.
First, we consider the scenario presented in Subsection 2.1.1 as a starting
point. In this scenario, a dataset is clustered using different parameter con-
figuration, these solutions are inspected visually and finally the best solution
is kept. The scenario is summarized in 9 steps defined in Algorithm 1 and
the R code presented in Listing 2.1 is tantamount to this algorithm.

Moving the
computation
to the data
makes a
difference

It goes without saying that there are clear differences between the code to
run the clustering scenario in a single machine (Listing 2.1) and the code to
run it in the clustered (Listing 3.1). The main differences come from the fact
that there is a big change in how the computation of the clustering is done.
In the fist case, the data is moved to memory in order to do the processing. In
the second case, the processing is moved to the data to efficiently perform
parallelization and data-intensive computation. To get a detailed view of
how the data is transferred between the client and the cluster and what
are the components in charge of this communication (sometimes the HDFS
service and sometimes a Stratosphere program), Figure 6 can be used. An
equivalent diagram for the non parallel version is available in Figure 7.

41



The code used to solve this scenario using the cluster is provided in
Listing 3.1. Differences in

detail
The differences between the single-machine version and the

cluster one are summarized in Table 4. In comparison with the single-
machine version, an extra step for loading the package is added. On the
other hand, some steps are not necessary since there is no need of moving
the data from the file system (Steps 1 and 9). The data sampling step is
somehow different. In the cluster version, it is not possible to sample the
same points of the original file for each execution of the algorithm. This
is due to the impossibility of predicting in which position of the text file
each point it. To accomplish this we would need to store the information
in binary files. This difference is relevant because the selection of different
points might lead to small variations in the computation of the Dunn index.
As a result of this change, the distances in the cluster-aware code have to
be computed for the three samples.

3.4.2 Classification with Naive Bayes

RecapIn this subsection, we proceed to present the differences introduced in
the code to execute the code in the cluster using the stratosphereR package.
First, we consider the scenario presented in Subsection 2.1.2 as a starting
point. In this scenario, two datasets are used as an input. The training
dataset is used to construct a probabilistic model and the unlabelled data
is used to classify its instances using the mentioned model. The scenario is
summarized in 5 steps defined in Algorithm 2 and the R code presented in
Listing 2.2 is tantamount to this algorithm.

How to share
the model?

As we have already explained in Subsection 2.1.2, the goal is to allow the
training of the dataset in the R environment and the classification of un-
labelled instances in the Stratosphere platform. The main obstacle in this
process is transferring the predictive model from the R environment to the
scoring algorithm. In order to overcome this obstacle, it is necessary to store
the model in a way that the scoring algorithm can use it. Fortunately, a stan-
dard based on XML called PMML[GHM02] was proposed by the Data Min-
ing Group consortium. This standard supports Naive Bayes models[AG13]
among others. The standard is already in a mature stage of development
and had become a de-facto standard adopted by a variety of tools and prod-
ucts like Weka[HFH+09], RapidMiner [PMHGP11], KNIME [BCD+09] and
Oracle. For our purposes, we will use the pmml package[ZGW09] which al-
lows users to export some models into PMML files. An example of a PMML
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Table 4: Differences between parallel and non-parallel clustering programs
Step Single-machine Cluster

0 Loading
package.

- Install and load the
stratosphereR package

1 Read. Read the csv file into a
data frame

2 Cluster. Cluster the points us-
ing the different param-
eters configuration

Cluster the points us-
ing the different param-
eters configuration

3 Sample. Sample one hundred
points from the output
of the clustering

Sample one hundred
points from each out-
put of the clustering.

4 Distances. Compute the distances
between the points
sampled.

Compute the distances
between the points of
each sample.

5 Evaluation. Compute the Dunn in-
dex for each execution
of the algorithm.

Compute the Dunn in-
dex for each execution
of the algorithm.

6 Plot eval-
uation.

Plot in a bar chart the
results of the previous
step.

Plot in a bar chart the
results of the previous
step.

7 Choose
the best
solution.

Assign a new name to
the best solution and
the best sample.

Assign a new name to
the best solution and
the best sample.

8 Visual in-
spection.

Plot the sample using a
colour code for the clus-
ters.

Plot the sample of the
best solution using a
colour code for the clus-
ters.

9 Write Append the clusters to
the original data frame
and write it into sec-
ondary memory.

Already done in step 2
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Listing 3.1: Distributed clustering with K-Means using stratosphereR
# 0 Load stratosphereR package

install.packages("stratosphereR")

library(stratosphereR)

# 1 We don ’t have to read because the file is already in the HDFS system

# 2 K-Means to cluster

cl_outputPath2 <- stratosphere.mining.clustering.randomInitializationKMeans

(2, "/points")

cl_outputPath3 <- stratosphere.mining.clustering.randomInitializationKMeans

(3, "/points")

cl_outputPath4 <- stratosphere.mining.clustering.randomInitializationKMeans

(4, "/points")

# 3 Sample data

stratosphere.file.sample(paste(cl_outputPath2 , "points", sep = ""), "/

sampleclustered2", 100)

stratosphere.file.sample(paste(cl_outputPath3 , "points", sep = ""), "/

sampleclustered3", 100)

stratosphere.file.sample(paste(cl_outputPath4 , "points", sep = ""), "/

sampleclustered4", 100)

# 4 Compute the distances between points

cl_d2 <- dist(cl_datasample2[c("V2", "V3")], method = "euclidean")

cl_d3 <- dist(cl_datasample3[c("V2", "V3")], method = "euclidean")

cl_d4 <- dist(cl_datasample4[c("V2", "V3")], method = "euclidean")

# 5 Evaluate the clustering

library(fpc)

cl_dunn <- c(

cluster.stats(cl_d2, as.numeric( cl_datasample2$V1 ))$dunn2 ,

cluster.stats(cl_d3, as.numeric( cl_datasample3$V1 ))$dunn2 ,

cluster.stats(cl_d4, as.numeric( cl_datasample4$V1 ))$dunn2

)

# 6 Plot dunn indexes

barplot(cl_dunn , names.arg=c(

"k=2", "k=3", "k=4"

))

# 7 Decide which solution is the best one

cl_best_sample <- cl_datasample2

cl_best_path <- cl_outputPath2

# 8 Plot to visualize the best solution

plot(cl_best_sample$V2, cl_best_sample$V3, col=cl_best_sample$V1)

# 9 The solution is already on the file system
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Figure 6: Data flow of the operations of the parallel version of the clustering
scenario
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Figure 7: Data flow of the operations of the non-parallel version of the
clustering scenario
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model is included in the Appendix A.
Implementa-
tion
details

In order to solve this problem, we have implemented a PMML evalua-
tor for Stratosphere reusing the already existing jpmml library[jpm]. This
library, among other interesting features, can handle missing and invalid
values and outlier instances. The evaluator takes as input the file with the
instances that should be classified, the path to output the result and the
model generated with R. In order to hide some complexity from the user,
the stratosphereR package automatically stores the PMML in disk (in the
HDFS distributed filesystem) and executes the Stratosphere program using
this file.

Differences
with the
non-parallel
version

As it can be noticed in Table 5, Using the parallel version of the Naive
Bayes classification (Listing 3.2) introduces a small overhead in the process,
in comparison with the memory-limited single instance one. First, it is
necessary to load two additional packages (stratosphereR and pmml and
second, it is necessary to convert the model generated by the naiveBayes
function to PMML format. As we have mentioned in the previous example
(Subsection 3.4.1), the main difference in the processing is due to the change
of paradigm; in the parallel version, the computation is moved to the data
and not the opposite.

3.4.3 Finding frequent terms

The solution in
short

In this subsection, we demonstrate how the stratosphereR package can
solve the problem proposed in Subsection 2.1.3. We are going to use a Strato-
sphere program written specifically to solve the needs of this scenario and
hence the behaviour is aligned with the single-machine counterpart present
in the qdap package. The difference relies in the use of Stratosphre opera-
tions to solve the problem, which allow us to execute the program in a highly
parallel system.

Relevant im-
plementation
details

As it can be observed in the code that uses the stratosphereR package
(Listing 3.3), the last step is executed in the R environment since the output
of the Stratosphere program is small enough to fit in R memory in spite of
its limitations. We have tested that R can handle without problem up
to 12 million instances as output of this program and the overload of the
communication is insignificant, it takes more time to load some R packages
than bringing the output from the cluster to the R environment.

Differences
with the
non-parallel
version

In the parallel version, it is necessary to bring the resulting data of the
second step in the cluster to the R environment, which adds an additional
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Listing 3.2: Distributed classification with Naive Bayes using stratosphereR
# Required libraries

install.packages("stratosphereR")

library(stratosphereR)

library(e1071)

library(pmml)

# Load the required dataset

dataset_train <- stratosphere.file.toDataFrame("/train.csv")

# Create the model

model <- naiveBayes(dataset_train [,1:4], dataset_train [,5])

# Output the PMML representation

pmml_model <- pmml(model , predictedField="Species")

# Classify the unlabelled data using the PMML model

stratosphere.mining.classifyFromModel("unlabelled.csv", "output.csv", pmml_

model)

Table 5: Differences between parallel and non-parallel classification pro-
grams

Step Single-machine Cluster
0 Loading

package.
Install and load the
e1071 package

Install and load
the e1071, pmml
and stratosphereR
packages

1 Read. Read the csv file with
the labelled instances
into a data frame.

Read the csv file with
the labelled instances
into a data frame.

2 Train the
model.

Train the model. Train the model.

3 Prediction. Predict the class of the
unlabelled data.

Predict the class of the
unlabelled data.

4 Semantic
related-
ness.

Write the result to
disk.
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Figure 8: Data flow of the operations of the parallel version of the classifi-
cation scenario

49



Figure 9: Data flow of the operations of the non-parallel version of the
classification scenario
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step to the process. In the version however, it is not necessary to load
the data since the Stratosphere program already deals with the data in
the given format (CSV). If we don’t take into account the loading of an
additional package, both versions of the program have the same number of
steps, unlike the first example since we don’t have to write the output to
disk. In spite of this, these steps are slightly different as Table 6 shows.

3.5 Performance evaluation

Goal of the
tests

We now present a set of experiments studying the viability of our so-
lution and its performance in comparison with traditional non-parallel R
programs. At the same time, we conduct experiments benchmarking the
scalability of the Stratosphere programs presented. This work did not com-
pared empirically Stratosphere with other large-scale execution engines since
already conducted experiments indicate that Stratosphere offers compara-
ble or better than general-purpose execution engines (Hadoop and Hive) and
domain-specific ones (as Giraph).[ABE+14]

EnvironmentAll tests have been executed in virtual private servers located in the same
data centre with the same configuration in all the nodes: a processor of 2
GHz, 2 GiB of main memory and solid state drives. The data is transferred
between nodes using a high speed private interface. We compare the Strato-
sphere programs running on Stratosphere 0.6 and using HDFS 1.2.1 against
programs running on R 3.0.2.

Scalability test
procedure

In our experiments, when the size of the file is doubled, the number of
nodes in the cluster is also doubled. In consequence, a perfectly parallel
line would represent a perfectly linear scalable implementation, which is
impossible to achieve due to unavoidable costs of communication, scheduling,
etc.

3.5.1 Naive Bayes

Non-parallelOur very first experiments using the Naive Bayes classifier evidenced
the memory limitations of R working with even medium sized objects. The
machine used was not able to classify files over 180 MiB (2000000 instances
with 4 dimensions) although the machine had a main memory of 2 GiB. The
R implementation of the algorithms neither took advantage of the multicore
processor. Figure 12 shows that in the non-parallel implementation, most of
the time is consumed by the classification of the unlabelled instances. The
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Listing 3.3: Distributed frequent terms using stratosphereR
install.packages("qdap")

install.packages("stratosphereR")

# Select the most frequent elements

pathFrequency <- stratosphere.mining.frequentTerms(allwordsPath , top =1000)

# Bring data to R

frequency <- stratosphere.file.toDataFrame("pathFrequency")

words <- frequency[,"WORD"]

# Find coincidences based on synonyms

library(qdap)

lapply(words , function(x) intersect( synonyms(x, return.list=FALSE), words)

)

Table 6: Differences between parallel and non-parallel frequent terms pro-
grams

Step Single-machine Cluster
0 Loading

package.
Install and load the
qdap package

Install and load the
qdap and strato-
sphereR packages

1 Read. Read the csv file into
a data frame

2 Frequent
Terms.

Find a determined
number of most
frequent terms

Find a determined
number of most
frequent terms

3 Read
result.

- Bring the result to a
data frame.

4 Semantic
related-
ness.

Find coincidences
based on synonyms.

Find coincidences
based on synonyms.
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Figure 10: Data flow of the operations of the parallel version of the frequent
terms scenario
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disk service time probably would be higher in non-solid disks, but do not
seem to be decisive in any case.

ParallelIn comparison, Java-based PMML classifier shows a strong performance.
The algorithm executed in parallel in two instances of the cluster is able
to classify points up to 10 times faster than R running in a single node
(Figure 14). We have excluded the time consumed by the generation of the
model as it is the same in both cases and we have seen that it is irrelevant
considering our hypothesis of having a small dataset. This extraordinary
good performance of the stratosphere program is in part certainly due to
the processing of the data in a pipeline[ABE+14]. On the contrary, the R
program has to wait until the whole file is loaded into memory to start pro-
cessing the points. We have included the time consumed by the installation
and loading of the required packages: rJava, rhdfs, pmml and stratosphereR
itself. Under these circumstances, it is no wonder that the stratosphereR
implementation performs specially better than the R implementation when
the amount of data is bigger, since this cost is static, it does not increase
with the volume (Figure 13).

Parallel in
larger datasets

In order to test the behaviour of the Stratosphere program (the classifi-
cation step only) in bigger amounts of data, we have conducted tests using
again two instances but with gigabyte-scale datasets. The performance is
observed to increase with the data size, as it is shown the results in terms
of number of instances processed per second in Table 7. Probably this effect
is caused because by high Stratosphere’s overhead as time of launching the
jobs and communication costs that do not depend on the size of the dataset.
We did not execute the program in bigger datasets since programs that take
more than one hour are not useful for interactive programming and because
we reached the storage limitations of the cluster. Further scalability tests
have not been performed since this is an embarrassing parallel task.

3.5.2 KMeans

Data intensive
experiments

All our experiments using the KMeans algorithm confirmed empirically
the memory limitations of the R interpreter. Since we could not test the per-
formance of R with medium-sized datasets, our first experiments using this
algorithm were designed to test both alternatives with a computer intensive
task. For that, we used the scenario defined in Subsection 2.1.1 using the
following parameters: 100 iterations; three executions of the algorithm; and
10, 50 and 100 centroids.
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Figure 11: Data flow of the operations of the non-parallel version of the
frequent terms scenario

Table 7: Performance in gigabyte scale of the Naive Bayes classifier in Strato-
sphere

Size Instances
Execution time

(seconds)
Instances processed

per second
12 GiB 200000000 4531 44140
6 GiB 100000000 2791 35829
3 GiB 50000000 1425 35088
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Figure 12: Naive Bayes non-parallel implementation time breakdown

Figure 13: Naive Bayes parallel implementation time breakdown
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The R version
performs
better

Figure 15 clearly demonstrates that R KMeans implementation clearly
outperforms Stratosphere even considering the time of loading from and
writing to disk. This difference of performance is due to the overhead per
iteration in Stratosphere. Stratosphere nodes need to communicate a partial
solution, schedule new tasks and start them for every iteration. Using the
stratosphereR package, the time consumed by the sampling of a file stored
in the distributed file system is not significant. First, the files that fit into
memory cannot be considered big and second, only small blocks of the file
are read during the sampling, reducing the amount of data communicated
between the cluster and the client. Once again, the R script failed when
trying to process significantly small files (over 200 MiB).

KMeans is the
bottleneck in
the nonparallel

We have observed that the reading and writing time is not so big in
comparison with the first example, because this time the case is more data-
intensive. The time consumed computing the distances and the Dunn index
can be considered big since we are computing this using only a sample of
the file and this time could not be affordable if we were using all the points
clustered.

The second set of tests study the scalability of the Stratosphere program
using bigger file sizes (i.e. at gigabyte scale). Scalability

tests
As we have mentioned before,

we have duplicated the size of the file at the same time that we duplicate the
number of nodes, duplicating hence the computational power of the cluster.
Scaling out machine learning algorithms is an intense and troublesome topic
of research. We will hence use a straight-forward approach and only discuss
the scalability of the scenarios defined. Figure 16 represents time of pro-
cessing against file size. As it can be observed, the processing of bigger files
introduce little overhead and this overhead decreases with the number of
nodes. These results among with the not-to-big slope (1.81) observed in the
linear regression curve, prove that we can cost-effectively grow the capacity
of the cluster.

3.5.3 Frequent terms

What do we
test?

The last set of tests were performed in order to evaluate the scenario
presented in Subsection 2.1.3. We recall that this scenario consists of a
frequent terms search and the discovery of semantically related words among
these terms. We have also left out the last step of the algorithm (semantically
relatedness) since this part is always executed within the R environment and
no relevant findings were found. Since this algorithm is deterministic, we
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Figure 14: Performance comparison of Naive Bayes classifier implementa-
tions in small file sizes. Stratosphere implementation runs on 2 nodes mean-
while R implementation run on a single node

Figure 15: Performance comparison of KMeans implementations in small
file sizes. Stratosphere implementation runs on 2 nodes meanwhile R imple-
mentation run on a single node. R did not have enough memory to process
6M instances.
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Figure 16: Scalability of the KMeans program in Stratosphere

Figure 17: Clustering non-parallel implementation time breakdown
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checked that the output of both implementations was the same for the same
input. After assuring that the results are identical, we have run a set of tests
to measure the performance and scalability.

Memory
limitation in R
again

Once again, the R environment proofs to be very constrained by memory
limitations. In this case, we were not able execute the algorithm using as
input a file of 133 MiB (five million words) because the programs failed
when it tried to allocate 1 GiB of memory while trying to perform a pattern
matching operation, which is part of the R base package. The allocation of a
portion of memory 7 times bigger than the input file for this single operation
does not seem to be appropriate, and the only explanation found to this fact
is the copy-on-modify principle followed in R.

Result of the
comparison

Again, we expected the Stratosphere experiment (Figure 18) in two nodes
to finish in a little bit more than half of the time because the computational
power was doubled. However, these expectations were overpassed and the
Stratosphere program outperforms the R program, specially when we tested
it with bigger files. In particular, the performance of the R package dramat-
ically drops when we increase the size of the file despite of the small size of
it.

Conclusion of
the comparison

After taking a look to the code of the qdap package and special close
look to the snippet that keeps the most popular elements, there is no sig-
nificant differences in the implementation that explain that big difference.
It was observed that the pipe-lining of the data gives Stratosphere a clear
competitive advantage.
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Figure 18: Performance comparison of the Frequent Terms implementations
in small file sizes. Stratosphere implementation runs on 2 nodes meanwhile
R implementation run on a single node. R did not have enough memory to
process 12M instances.
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Figure 19: Scalability of the Frequent Terms program in Stratosphere
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Chapter 4

Related work

We have categorized the work related to our approach into two groups.
The first one (Section 4.1) collects data analysis libraries that facilitate per-
forming data analysis. The second one (Section 4.2) covers the different
approaches to do data-intensive computation using R overcoming its main
memory limitations.

4.1 Data mining libraries

Popular mining
libraries

Libraries for data analysis and mining is a not a novel topic. Some li-
braries provide already written solutions for common data mining tasks.
However, even very comprehensive libraries cannot cover all the possible
user cases. For instance, Weka[HFH+09] (Java) is probably the most well-
known tool for data mining on very limited amounts of data. Neverthe-
less, these functionalities are not written to run in parallel and hence Weka
is not suitable for training models involving very large datasets. Similarly,
sci-kit[PVG+11] is Weka’s counterpart in Python, facilitating tasks like clas-
sification, regression, clustering, dimensionality reduction, model selection
and preprocessing.

DistributedSome libraries provide ready-to-use distributed algorithms that allow
the user to execute the most common machine learning tasks on vast amounts
of data. Hence, they avoid the burden of writing parallel programs on the
users. In this category, Mahout is probably the most accepted in both
academia and business and stands out among the rest of products. In
spite of its popularity, Mahout intends to cover just a very limited set of
problems[OADF11] although its new DSL for linear algebra might open the
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doors to a number of new algorithms. In a similar way, MLbase[KTD+13]
provides implementations of some popular machine learning algorithms us-
ing Spark[ZCF+10] and facilitates the implementation of them too. More
recently, a machine learning project not bound to any execution framework
called Oryx [ory] was announced. In general, the main problem of these li-
braries is the difficulty of performing them together with other tasks like
data visualization or transformations on small datasets.

In-databaseSome databases are adopting a shared-nothing architecture in order to
scale-out efficiently. In these architectures, an in-database machine learn-
ing library like MADlib[HRS+12] also seems appropriate for performing data
analysis in big amounts of data. MADlib includes a respectable number of
algorithms covering supervised learning, unsupervised learning and descrip-
tive statistics. Furthermore, the package PivoltalR[Qia14] provides an R
wrapper for this library making it a solution that can cover cases similar to
those that we proposed here: part of the processing in a large-scale facility
and part of the processing using R that does not run in parallel. In spite
of this advantage, using in-database data mining makes more difficult to
implement some algorithms and worse performance if the database has to
be accessed frequently.

4.2 Data intensive computation using R

Some efforts have aroused in the last years with the purpose of meeting
the demand of the R community for analytics on large amounts of data.
Many packages and tools have attempted to facilitate the creation of parallel
programs using R[SME+09]. Nevertheless, we are going to limit our review
to those approaches that offer automatic parallelization, focused on data-
intensive computation and paying special attention to those that allow large-
scale computation. We classify these approaches in the following groups.

4.2.1 External memory

To overcome the memory limitation, some packages implement external
memory algorithms. Most of them are available on the CRAN[Hor12b]
repository. Unfortunately, these packages cannot scale-out data processing
and hence it is not feasible to run them in a cluster.
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• biglm: implements linear models for external memory data. Linear
models explain the dependence of one variable on another and are
hence used to forecast the value of a variable.

• bigmemory: for massive external memory matrices. It is used jointly
with specific packages that provide analytics for these matrices like
biganalytics.

• ff: for big data structures that use standard R datatypes. It maps
transparently a disk structure to RAM creating the illusion of working
with an in-memory structure.

• foreach: scale-out computation but only for parallel tasks that do not
require communication among the different nodes. Therefore, it is
suitable only for embarrassingly parallel problem.

The RevoScaleR[rev] package provides a collection of statistical algorithm
that could run in a single machine or in a cluster. These algorithms use xdf
files. In order to use these algorithms, we have to store the information in
this file format and use the pertinent interface to access and manipulate it.
Nevertheless, this package also allows users to execute the same operations
using a Hadoop cluster.

4.2.2 Divide and recombine

Some packages (trmr [rev], mapReduce, Hadoop Interative[IF] and RHIPE [GHR+12])
give the user the possibility to write code in R that runs on a data cluster
using the MapReduce programming model. The resulting programs are very
similar to those that could be written in other interfaces for different lan-
guages (in Java or Scala). The code written in R is translated to Java
bytecode in order to run it on the cluster.

Therefore, it is necessary to write programs using the MapReduce pro-
gramming model. This solution facilitates writing code for tackling all the
problems that fit this divide and recombine approach. However, it demands
the user to be trained to apply the divide and recombine technique. As we
have mentioned before (Chapter 2, Section 2.2), using these programming
models is a cumbersome process for most analysts. Our approach precisely
aims to avoid this.
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4.2.3 Query languages

Query
languages and
their relation
with KDD

Some packages offer the possibility of doing data analysis using a query
language within R. This is possible, for instance, in NoSQL databases like
MonetDB (MonetDB.R[MLD]) or HBase[rev] but also in a big data platform
like Hadoop (Ricardo[DSB+10]). Query languages are a great tool for the
first step of the KDD process (discussed in Section 2.3) and good enough for
data pre-processing and processing but it is not expressive enough for data
mining and knowledge discovery.

Lack of
expressivity is
not the only
drawback

This alternative has three important drawbacks: the user must be skilled
in using different language, queries languages are expressively more limited
for data analysis[GML14] and queries must produce a query that fits in
memory. In order to reduce the memory limitations of this technique, it is
possible to use share memory techniques that avoid copying all the retrieved
elements of a query to the R environment[GLW+11].

4.2.4 Distributed collection manipulation

Description of
the group

Some approaches to data intensive computation introduce a new level
of abstraction based on distributed collections of objects. Programmers
can manipulate these collections with a limited set of operators and
these operations are automatically distributed. This solution facilitates the
implementation of machine learning algorithms but forces the user to use
a different programming model (similarly to the packages described in the
subsection 4.2.2).

Some
examples

We have already introduced foreach, a package for scale-out computa-
tion on arrays, but only for parallel tasks that do not require communica-
tion among different nodes. Presto[VBR+13] extends the R programming
language with a few clauses, including a foreach construct, to allow the
programmer to parallelize array computation. Last but not least, SparkR
goes one step beyond. It introduces the RDD programming model[ZCD+12],
which allows the user to perform parallel operations on collections.
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Chapter 5

Conclusions and future work

This work has studied the viability of an approach based on the use of
ready-to-use algorithms to write programs that can run in both a distributed
environment and a single machine using the R language (for the nonparallel
parts) and the Stratosphere platform (for the distributed parts). In this
chapter we will discussed the findings and contributions of this study among
with and some limitations identified.

5.1 Conclusions

ContributionsAll the proposed goals have been effectively reached resulting in the four
expected deliverables. First, we have defined and explained precisely the
functionalities needed in the prospective library (Section 3.2). Second, we
have defined those functions that we have considered appropriate based on
our research, in order to facilitate the manipulation of files stored using
HDFS. Third, we have implemented another module that communicates
with the cluster making use of the already existing Stratosphere client. Last
but not least, we have implemented, in order to proof the concepts presented
here, a PMML classificator that distributes the evaluation of unlabelled
instances among the different instances of the cluster, an algorithm to select
the most frequent terms in a corpus and the necessary wrapper functions for
them and the already existing KMeans program, allowing the users to use
them using R. In addition to these deliverables, we have tested the solution
and analysed the results of the mentioned tests, in pursuance of proving the
viability of this solution.
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It seems impossible to keep the single-machine programs as they are and
execute them in a distributed system. Evaluation of

the examples
However, we were able to write code

very similar to the original one that efficiently run in the cluster without
heavily modifying the syntax. In any case, the complexity of these modi-
fications are trivial compared to the complexity of writing code using the
MapReduce paradigm or the PACT operators.

Performance
evaluation

After executing the tests described in Section 3.5, we have empirically
proven that the solution of executing the data processing in the clustered
with Stratosphere is:

• competitive and even faster than native R programs thanks to the
pipelining for every parallelizable programs in the same (small) file
size range,

• competitive with R for data mining tasks with a lot of iterations in
the same file size range.

• able to process files of a volume that is inaccessible for R, and

• able to scale to gigabyte level without significant loss.

5.2 Future Work

Improve the
library

We have intentionally selected only a small number of algorithms to
include in the design of the library. However, the already available imple-
mentations usually are not ready to work with any kind of input data, they
are not type-agnostic, which can produce frustration in the user trying to ap-
ply the technique to his data. The algorithms should be really ready-to-use
and be able to work with any number of dimensions and any type of data.
In addition, machine learning libraries are rapidly evolving and constantly
embracing new techniques and algorithm, for instance to include supervised
machine learning techniques known as structured learning[MB14]. These
techniques follow the principles of approaches for classification and regres-
sion, that predict a label or a number, and apply them to predicting any kind
of object; which consists in maximizing a given objective function[NL11].
Furthermore, we believe that providing linear algebra primitives would also
help users to implement their own statistical algorithms based on them as
in the high-level language SystemML[GKP+11].
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One of the weak points of this approach is the lack of functionalities to
cover all the possible needs of the pre-processing and transforming steps of
the KDD process (see Section 2.3). Hybrid

approaches
Nevertheless, we believe this weakness

can be solved by using an hybrid approach where the user can create these
easy-to-distribute programs with tools like those presented in Subsection
4.2.2. In this way, the library would cover those tasks that are difficult
to parallelize and the divide and recombine technique would allow the user
to program by himself any easy-to-parallelize task. In combination with a
query language like those presented in Subsection 4.2.3, every single step
of the KDD process could be covered with a suitable solution to apply the
KDD process with large amounts of data.

Distributed
evaluation

We have previously talked about how sampling can be used for evaluating
the solutions that the machine learning algorithms provide. However, many
scenarios might need performing these evaluations on large datasets for the
sake of accuracy or for different reasons. Regarding this situation, we believe
that large-scale libraries should start including algorithms like Dunn index
for clustering or the computation of the area under the ROC curve[Bra97b].

Improvements
in the
architecture

Currently, in order to integrate your own Stratosphere programs in this
solution, it is necessary to not only include the JAR file but also include a
smart portion of code to create an R interface for it. As we have mentioned
in 3.1, it could be possible to include a component that automatically gen-
erates an R wrapper for any Stratosphere program. This component would
improve the extensibility of the tool and also low the entry barrier to new
contributions. Besides that point, we believe the architecture is not a bot-
tleneck for the current growth of the software and adding more components
would only over-engineer the solution.
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erico Morán. Optimization of a competitive learning neural
network by genetic algorithms. In New Trends in Neural Com-
putation, pages 185–192. Springer, 1993.

[NA08] Thuy TT Nguyen and Grenville Armitage. A survey of tech-
niques for internet traffic classification using machine learn-
ing. Communications Surveys & Tutorials, IEEE, 10(4):56–76,
2008.

[NL11] Sebastian Nowozin and Christoph H Lampert. Structured
learning and prediction in computer vision. Foundations and
Trends R© in Computer Graphics and Vision, 6(3–4):185–365,
2011.

[NSR11] Arvind Narayanan, Elaine Shi, and Benjamin IP Rubinstein.
Link prediction by de-anonymization: How we won the kag-
gle social network challenge. In Neural Networks (IJCNN),

77



The 2011 International Joint Conference on, pages 1825–1834.
IEEE, 2011.

[OADF11] Sean Owen, Robin Anil, Ted Dunning, and Ellen Friedman.
Mahout in Action. Manning Publications Co., Manning Pub-
lications Co. 20 Baldwin Road PO Box 261 Shelter Island, NY
11964, first edition, 2011.

[ory] Oryx source code. https://github.com/cloudera/oryx. Ac-
cessed: 2014-03-01.

[OW11] R Wayne Oldford and Adrian Waddell. Visual clustering of
high-dimensional data by navigating low-dimensional spaces.
In 58th Congress of the International Statistical Institute, Spe-
cial Topics Session, volume 57, 2011.

[Pal07] Nikhil Pal. Advanced techniques in knowledge discovery and
data mining. Springer, 2007.
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Appendix A

PMML model example

.

<?xml version="1.0"?>

<PMML version="4.1" xmlns="http: //www.dmg.org/PMML -4_1" xmlns:xsi="http://

www.w3.org /2001/ XMLSchema -instance" xsi:schemaLocation="http: //www.dmg.

org/PMML -4_1 http://www.dmg.org/v4 -1/pmml -4-1.xsd">

<Header copyright="Copyright (c) 2014 jlpino" description="NaiveBayes 

Model">

<Extension name="user" value="jlpino" extender="Rattle/PMML"/>

<Application name="Rattle/PMML" version="1.4"/>

<Timestamp >2014 -04 -27 21 :48:49 </Timestamp >

</Header >

<DataDictionary numberOfFields="6">

<DataField name="Species" optype="categorical" dataType="string">

<Value value="setosa"/>

<Value value="versicolor"/>

<Value value="virginica"/>

</DataField >

<DataField name="Sepal.Length" optype="continuous" dataType="double"/>

<DataField name="Sepal.Width" optype="continuous" dataType="double"/>

<DataField name="Petal.Length" optype="continuous" dataType="double"/>

<DataField name="Petal.Width" optype="continuous" dataType="double"/>

<DataField name="DiscretePlaceHolder" optype="categorical" dataType="

string">

<Value value="pseudoValue"/>

</DataField >

</DataDictionary >

<NaiveBayesModel modelName="naiveBayes_Model" functionName="classification

" threshold="0.001">

<MiningSchema >

<MiningField name="Species" usageType="predicted"/>

<MiningField name="Sepal.Length" usageType="active"/>

<MiningField name="Sepal.Width" usageType="active"/>

<MiningField name="Petal.Length" usageType="active"/>

<MiningField name="Petal.Width" usageType="active"/>

<MiningField name="DiscretePlaceHolder" usageType="active"

missingValueReplacement="pseudoValue"/>

</MiningSchema >

<Output >
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<OutputField name="Predicted_Species" feature="predictedValue"/>

<OutputField name="Probability_setosa" optype="continuous" dataType="

double" feature="probability" value="setosa"/>

<OutputField name="Probability_versicolor" optype="continuous" dataType=

"double" feature="probability" value="versicolor"/>

<OutputField name="Probability_virginica" optype="continuous" dataType="

double" feature="probability" value="virginica"/>

</Output >

<BayesInputs >

<Extension >

<BayesInput fieldName="Sepal.Length">

<TargetValueStats >

<TargetValueStat value="setosa">

<GaussianDistribution mean="5.006" variance="0.124248979591837"/>

</TargetValueStat >

<TargetValueStat value="versicolor">

<GaussianDistribution mean="5.936" variance="0.266432653061224"/>

</TargetValueStat >

<TargetValueStat value="virginica">

<GaussianDistribution mean="6.588" variance="0.404342857142857"/>

</TargetValueStat >

</TargetValueStats >

</BayesInput >

</Extension >

<Extension >

<BayesInput fieldName="Sepal.Width">

<TargetValueStats >

<TargetValueStat value="setosa">

<GaussianDistribution mean="3.428" variance="0.143689795918367"/>

</TargetValueStat >

<TargetValueStat value="versicolor">

<GaussianDistribution mean="2.77" variance="0.0984693877551021"/>

</TargetValueStat >

<TargetValueStat value="virginica">

<GaussianDistribution mean="2.974" variance="0.104004081632653"/>

</TargetValueStat >

</TargetValueStats >

</BayesInput >

</Extension >

<Extension >

<BayesInput fieldName="Petal.Length">

<TargetValueStats >

<TargetValueStat value="setosa">

<GaussianDistribution mean="1.462" variance="0.0301591836734694"/>

</TargetValueStat >

<TargetValueStat value="versicolor">

<GaussianDistribution mean="4.26" variance="0.220816326530612"/>

</TargetValueStat >

<TargetValueStat value="virginica">

<GaussianDistribution mean="5.552" variance="0.304587755102041"/>

</TargetValueStat >

</TargetValueStats >

</BayesInput >

</Extension >

<Extension >

<BayesInput fieldName="Petal.Width">

<TargetValueStats >

<TargetValueStat value="setosa">
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<GaussianDistribution mean="0.246" variance="0.0111061224489796"/>

</TargetValueStat >

<TargetValueStat value="versicolor">

<GaussianDistribution mean="1.326" variance="0.0391061224489796"/>

</TargetValueStat >

<TargetValueStat value="virginica">

<GaussianDistribution mean="2.026" variance="0.0754326530612245"/>

</TargetValueStat >

</TargetValueStats >

</BayesInput >

</Extension >

<BayesInput fieldName="DiscretePlaceHolder">

<PairCounts value="pseudoValue">

<TargetValueCounts >

<TargetValueCount value="setosa" count="50"/>

<TargetValueCount value="versicolor" count="50"/>

<TargetValueCount value="virginica" count="50"/>

</TargetValueCounts >

</PairCounts >

</BayesInput >

</BayesInputs >

<BayesOutput fieldName="Species">

<TargetValueCounts >

<TargetValueCount value="setosa" count="50"/>

<TargetValueCount value="versicolor" count="50"/>

<TargetValueCount value="virginica" count="50"/>

</TargetValueCounts >

</BayesOutput >

</NaiveBayesModel >

</PMML>
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Appendix B

Hyperlinks to the R packages
referred

Package URL
apply http://cran.r-project.org/web/packages/apply/
BayesTree http://cran.r-project.org/web/packages/BayesTree/

BGLR http://cran.r-project.org/web/packages/BGLR/

bigRR http://cran.r-project.org/web/packages/bigRR/

canopy http://github.com/lefthandedgoat/canopy

CORElearn http://cran.r-project.org/web/packages/CORElearn/

DiscriMiner http://cran.r-project.org/web/packages/DiscriMiner/

e1071 http://cran.r-project.org/web/packages/e1071/

elasticnet http://cran.r-project.org/web/packages/elasticnet/

fanny http://cran.r-project.org/web/packages/fanny/

foreach http://cran.r-project.org/web/packages/foreach/

fpc http://cran.r-project.org/web/packages/fpc/

gbm http://cran.r-project.org/web/packages/gbm/

GeneReg http://cran.r-project.org/web/packages/GeneReg/

glm http://cran.r-project.org/web/packages/glm/

glmnet http://cran.r-project.org/web/packages/glmnet/

glmpath http://cran.r-project.org/web/packages/glmpath/

HiddenMarkov http://cran.r-project.org/web/packages/HiddenMarkov/

kernlab http://cran.r-project.org/web/packages/kernlab/

kkmeans http://cran.r-project.org/web/packages/kkmeans/

lsmeans http://cran.r-project.org/web/packages/lsmeans/
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Package URL
LVQTools http://cran.r-project.org/web/packages/LVQTools/

ncvreg http://cran.r-project.org/web/packages/ncvreg/

nnet http://cran.r-project.org/web/packages/nnet/

plyr http://cran.r-project.org/web/packages/plyr/

pmml http://cran.r-project.org/web/packages/pmml/

qdap http://cran.r-project.org/web/packages/qdap/

randomForest http://cran.r-project.org/web/packages/randomForest/

rattle http://cran.r-project.org/web/packages/rattle/

rhdfs http://cran.r-project.org/web/packages/rhdfs/

RJDBC http://cran.r-project.org/web/packages/RJDBC/

rminer http://cran.r-project.org/web/packages/rminer/

RXQuery http://github.com/omegahat/RXQuery/

Rxshrink http://cran.r-project.org/web/packages/Rxshrink/

sqldf http://cran.r-project.org/web/packages/sqldf/

stats http://cran.r-project.org/web/packages/stats/

stream http://cran.r-project.org/web/packages/stream/

tabplot http://cran.r-project.org/web/packages/tabplot/
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Appendix C

Stratosphere-client dependency
tree

eu.stratosphere:stratosphere-clients

eu.stratosphere:stratosphere-core

org.apache.commons:commons-lang3

eu.stratosphere:stratosphere-runtime

commons-cli:commons-cli

com.amazonaws:aws-java-sdk

org.apache.httpcomponents:httpclient

org.apache.httpcomponents:httpcore

org.codehaus.jackson:jackson-core-asl

javax.mail:mail

javax.activation:activation

stax:stax-api

org.apache.hadoop:hadoop-core

xmlenc:xmlenc

com.sun.jersey:jersey-core

com.sun.jersey:jersey-json

org.codehaus.jettison:jettison

com.sun.xml.bind:jaxb-impl

javax.xml.bind:jaxb-api

javax.xml.stream:stax-api

org.codehaus.jackson:jackson-jaxrs

org.codehaus.jackson:jackson-xc

com.sun.jersey:jersey-server
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commons-httpclient:commons-httpclient

org.apache.commons:commons-math

commons-configuration:commons-configuration

commons-collections:commons-collections

commons-lang:commons-lang

commons-digester:commons-digester

commons-beanutils:commons-beanutils

commons-beanutils:commons-beanutils-core

commons-net:commons-net

org.mortbay.jetty:jetty

org.mortbay.jetty:jetty-util

tomcat:jasper-runtime

tomcat:jasper-compiler

org.mortbay.jetty:jsp-api-2.1

org.mortbay.jetty:servlet-api-2.5

org.mortbay.jetty:jsp-2.1

ant:ant

commons-el:commons-el

net.java.dev.jets3t:jets3t

hsqldb:hsqldb

oro:oro

org.eclipse.jdt:core

org.codehaus.jackson:jackson-mapper-asl

eu.stratosphere:stratosphere-compiler

eu.stratosphere:stratosphere-java

org.eclipse.jetty:jetty-server

org.mortbay.jetty:servlet-api

org.eclipse.jetty:jetty-continuation

org.eclipse.jetty:jetty-http

org.eclipse.jetty:jetty-io

org.eclipse.jetty:jetty-util

org.eclipse.jetty:jetty-security

org.eclipse.jetty:jetty-servlet

commons-fileupload:commons-fileupload

commons-io:commons-io

commons-logging:commons-logging

log4j:log4j

commons-codec:commons-codec
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com.google.guava:guava

junit:junit

org.mockito:mockito-all

org.powermock:powermock-module-junit4

org.powermock:powermock-module-junit4-common

org.powermock:powermock-core

org.javassist:javassist

org.powermock:powermock-reflect

org.objenesis:objenesis

org.powermock:powermock-api-mockito

org.powermock:powermock-api-support

org.hamcrest:hamcrest-all
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